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A Comprehensive Investigation of the Impact of
Class Overlap on Software Defect Prediction

Lina Gong, Haoxiang Zhang, Jingxuan Zhang, Mingqiang Wei, Senior Member, IEEE, and Zhiqiu Huang

Abstract—Software Defect Prediction (SDP) is one of the most vital and cost-efficient operations to ensure the quality of software under
developed. The performance of SDP heavily relies on the characteristics of experimental datasets (or say SDP datasets). However, there
often exists the phenomenon of class overlap in the SDP datasets, i.e., defective modules and non-defective modules are similar in terms
of values of metrics. Class overlap hinders the smooth performance as well as the use of SDP models. Even though efforts have been
made to investigate the impact of overlapping instance removing techniques on the performance of SDP, many open issues are still
challenging yet unknown. For example, 1) how to effectively identify the overlapping instances? 2) Whether is the phenomenon of
class overlap universal in the SDP datasets? 3) What are the impacts of class overlap on the performance and interpretation of SDP
models? Questions like these are very important but have not been fully explored yet. In this paper, we conduct an empirical study to
comprehensively investigate the impact of class overlap on SDP. Specifically, we first propose an overlapping instances identification
approach by analyzing the class distribution in the local neighborhood of a given instance. Based on the approach, we then investigate
the impact of class overlap on the performance and the interpretation of seven representative SDP models. Finally, we investigate the
impact of two common overlapping instance handling techniques (i.e., removing and separating techniques) on the performance of
SDP models. Through an extensive case study on 230 datasets that span across industrial and open-source software projects, we
observe that: i) 70.0% of SDP datasets contain overlapping instances; ii) different levels of class overlap have different impacts on the
performance of SDP models. The class overlap ratio and the number of instances seriously affect the stability of the performance of
SDP models; iii) class overlap affects the rank of the important feature list of SDP models, particularly the feature lists at the top 2 and
top 3 ranks; IV) Class overlap handling techniques could statistically significantly improve the performance of SDP models trained on
datasets with over 12.5% overlap ratios. Therefore, on the basis of these findings we suggest that future work in SDP should apply
our proposed KNN method to: i) identify whether the overlap ratios of their defect datasets are greater than 12.5% before building SDP
models; ii) remove the overlapping instances to find the more consistent guiding significance metrics; iii) combine RF classifier and class
overlap handling techniques when reducing the efforts to review codes.

Index Terms—Software defect prediction, class overlap, data quality, local analysis, K-nearest neighbourhood, software metrics

✦

1 INTRODUCTION

S OFTWARE Defect Prediction (SDP) aims to identify modules
that are defect prone in the Testing Phase of the Software

Development Life Cycle (SDLC). SDP plays an increasingly
important role in ensuring the quality of software being devel-
oped [17, 37, 59, 80] in the era of Artificial Intelligence. The
performance of SDP models heavily relies on the quality of SDP
(experimental) datasets. Typically, the SDP datasets include a
large number of modules (instances), which are expressed by a
series of metrics (e.g., code metrics and process metrics) and
labels (e.g., defect and non-defect). However, when collecting
SDP datasets, there is a phenomenon that software modules with
similar structure and size belong to different classes. The common
region combined by these software modules in SDP datasets would
lead to class overlap, since class overlap occurs when instances of
more than one class share a common region in the data space [74].

In the domain of machine learning, Prati et al. [52] firstly
conducted a systematic study to investigate the relationship be-
tween class overlap and the performance of classifiers. They found
that the loss of the performance of classifiers was not directly
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caused by class imbalance, but was related to the degree of class
overlap. After that, Denil and Trappenberg [15], Garcı́a et al. [16]
have revealed that class overlap seriously hinders the prediction
ability of classifiers. However, in the context of SDP, only sev-
eral researchers [11, 20] have raised concerns about removing
overlapping instances from the SDP datasets. For example, to
eliminate the effect of class overlap on the SDP model, Chen
et al. [11] applied neighbor cleaning to remove overlapping non-
defective instances. In addition, our prior study [20] exploited an
improved K-Means clustering cleaning approach (IKMCCA) to
remove overlapping defective and non-defective instances. The
two studies have shown that the performance of SDP models can
be improved by removing overlapping instances. That is to say,
the class overlap is harmful to the performance of SDP models.

However, some important issues have not been fully inves-
tigated in terms of overlapping instances and their impacts on
the SDP models. First, none of the prior studies attempts to
quantify the distribution and prevalence of overlapping instances
in the SDP datasets. For example, for the commonly used SDP
datasets prop-5-40 and xalan-2.5, we employ the t-distributed
Stochastic Neighbor Embedding (t-SNE) method to project them
into 2-dimensional space and visualize the overlapping instances
among independent features in Figure 1, where X-axis and Y-axis
represent the 2-dimensional features projected by t-SNE respec-
tively. Blue dots represent the defective instances, while black
dots represent the non-defective instances. From the visualization
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Fig. 1: The visualization of prop-5-40 and xalan-2.5.

of these two projects, we can observe that they have different
ratios and distributions of overlapping instances. Unfortunately,
none of the existing studies has quantified them. Second, even
though existing studies have shown that removing overlapping
instances could improve the performance of SDP models with
one evaluation metric, they do not investigate the relationship
between overlapping instances and the performance as well as the
interpretation of SDP models from different and comprehensive
evaluation metrics. Third, there exists two types of overlapping
instances handling techniques, i.e., removing and separating.
However, existing studies have only explore the impact of the
removing technique on the performance of SDP models without
investigating the separating technique and comparing the two
techniques.

To fill these research gaps, we first propose a K-nearest
neighborhood-based method to identify overlapping instances. We
then systemically investigate the impact of class overlap on the
performance and interpretation of SDP models. Through a large-
scale empirical study of 230 SDP datasets, we structure our study
by answering the following Research Questions (RQs):

● RQ1: How effective our proposed method is in identifying
overlapping instances in the SDP datasets?
For most of the studied 230 SDP datasets, our proposed over-
lapping identification method could identify more than 70% of
overlapping instances identified by our compared methods. In
contrast, the comparison methods identify less than 60% of over-
lapping instances identified by our proposed overlapping identified
method. Therefore, we recommend researchers and practitioners
use our proposed K-nearest neighborhood-based method to iden-
tify overlapping instances before they build their SDP models.

● RQ2: How overlapped are the SDP datasets?
Our statistics illustrate that 70.0% of SDP datasets have a class
overlap ratio above 5%. Indeed, 32.6% of SDP datasets have a
class overlap ratio above 12.5%, especially the frequently used
defect prediction datasets in NASA, AEEEM, PROMISE, ReLink
and SOFTLAB. It shows that overlapping instances are ubiquitous
in the SDP datasets. Therefore, we recommend researchers and
practitioners identify whether there are overlapping instances in
their studied datasets before building the SDP models.

● RQ3: How do different levels of class overlap impact the
performance of defect prediction models?
Experimental results indicate that the levels of class overlap have
different effects on the performance of SDP models. The class
overlap ratio that is over 12.5% seriously affects the stability

of the performance of SDP models. Meanwhile, the number of
instances in the training datasets would affect the stability of
the performance of SDP models trained on the training datasets
with over 12.5% overlap ratio. Therefore, we recommend that
researchers and practitioners should check the overlap ratio of
their defect prediction datasets and repeatedly run their models to
prevent unstable results and findings.

● RQ4: How does class overlap impact the interpretation of
defect prediction models?
Experimental results indicate that features at the top 1 rank (i.e,
important feature ranked in Top-1 lists calculated with Section 4.7)
in original and non-overlap datasets have a strong agreement,
features at the top 2 rank have a partial agreement, while fea-
tures at the top 3 rank vary considerably. Meanwhile, removing
overlapping instances could help to find more consistent guiding
significance metrics for a given dataset and different releases of
a given project. Therefore, we recommend that researchers and
practitioners should remove the overlapping instances to find the
more consistent guiding significance metrics.

● RQ5: How do different class overlap handling techniques
impact the performance of defect prediction models?
Our study shows that class overlap handling techniques could
statistically significantly improve the performance of SDP models
trained on datasets with over 12.5% ratios. Removing and Sep-
arating techniques have similar impacts on the performance of
SDP models. The RF classifier can obtain better performance on
both the original datasets and the datasets handled by removing
or separating techniques. Therefore, we recommend researchers
and practitioners apply RF classifier with removing or separating
techniques to build SDP models.

In summary, the main contributions of this work are fourfold:

1) We propose a novel method for identifying overlapping in-
stances in the SDP datasets, which is based on analyzing the class
distribution in the local neighborhood of the given instances.

2) We first quantify the degree of overlapping instances across
proprietary and open source available in the SDP datasets.

3) We study the exact relationship between the experimental
factors (i.e., overlap ratio, class overlap techniques, and classifiers)
and the performance as well as the interpretation of SDP models.

4) We have released a replication package in the GitHub reposi-
tory 1 to provide transparency into our process.

1. https://github.com/glnmzx888/SDP overlap

https://github.com/glnmzx888/SDP_overlap
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For the remainder of this paper, Section 2 presents the moti-
vation and related work of our study. Section 3 shows the details
of the identifying overlapping instances method, which is based
on analyzing a class distribution in a local neighbourhood of the
given instances. Section 4 provides our study design, including
studied datasets and experimental setup, while Section 5 presents
and discusses our experimental results. Section 7 presents the
implications that can be inferred from our results. Section 8
discusses the threats to the validity of our observations, followed
by the conclusions of our study in Section 9.

2 MOTIVATION AND RELATED WORK

2.1 Motivation

During software development, developers often encounter some
software modules with similar values of metrics but have different
states of the defect (i.e., defective or non-defective). The SDP
datasets collected from these software modules would include
many overlapping instances. Prati et al. [52], Garcı́a et al. [16]
and Denil and Trappenberg [15] have corroborated that class
overlap is important for classification performance.

Indeed, the SDP models built with classifiers also need high-
quality SDP datasets. If the SDP models are trained on class over-
lap datasets, they may achieve poor performance and interpreta-
tion. In SDP, there exist only a few researchers which consider the
class overlap as data quality or noise detection. For example, Tang
and Khoshgoftaar [63] proposed a clustering-based noise detection
method with noise factor metric to remove p% of noise instances
of datasets in the NASA corpus. Experimental results indicated
that removing noise instances could improve the performance of
the Decision Tree (DT) classifier. Kim et al. [33] investigated
the impact of noise instances on the performance of SDP models
by manually adding different percentages of noise instances. They
also proposed a closest list noise identification method to remove
noise instances. Meanwhile, there exist two studies that considered
both class imbalance and class overlap. For example, Chen et al.
[11] proposed the neighborhood cleaning learning approach to
only remove the overlapping non-defective instances. Gong et al.
[20] proposed an improved K-Means clustering cleaning approach
and investigated the impact of different removing methods on both
the within-project and cross-project SDP models.

The prior studies still have many unexplored avenues.

First, none of the existing studies investigates the nature of
class overlap in the SDP datasets. The four studies [11, 20,
33, 63] only proposed different removing methods to demonstrate
that class overlap is harmful to the performance of SDP models.
They do not quantify the degrees of overlapping instances and
investigate whether class overlap is prominent in the SDP datasets.

Second, the relationship between overlap ratio in the SDP
datasets and the performance of SDP models is not clearly
established. Kim et al. [33] just analyzed the relationship between
the percentage of noise instances and the performance of SDP
models by adding different numbers of noise instances. However,
the phenomenon of class overlap in the SDP datasets is not clearly
represented.

Third, the impact of class overlap on the interpretation of SDP
models is still unknown. An important role of SDP models is to
help developers understand which software metrics are more likely
to cause defects. Such insights could be necessary to improve

software quality. However, such an impact of class overlap on the
interpretation of SDP models needs to be investigated.

Finally, the prior studies just applied overlapping instances
removing techniques to eliminate the impact of class overlap
without considering other techniques. In the domain of machine
learning, besides removing techniques, there are other techniques
(i.e., the separating technique) to eliminate the impact of class
overlap on the performance of classifiers. However, none of the
existing studies investigates how the separating technique impacts
the performance of SDP models.

2.2 Related work
In this subsection, we describe related studies about the SDP
models and class overlap techniques.

Studies on the SDP models: The SDP models usually apply
machine learning algorithms to mine the rules between software
metrics and defect-proneness of software modules, which have
been an active research topic in software engineering [25, 59, 60].
In these prior studies, software defect datasets and machine learn-
ing algorithms are two important factors. Software defect datasets
include metrics that present the nature of software projects (i.e.,
code metrics and process metrics) and labels that present the defect
or non-defect of software modules [1, 5, 24, 83]. In the last few
decades, researchers have exposed lots of software defect datasets,
such as PROMISE [42], AEEEM [12], SOFTLAB [73], JIRA [80],
NASA [58], to name a few. Based on these software defect
datasets, some studies [24, 83] have compared the effectiveness
of various metrics on identifying the defective modules.

Different machine learning algorithms have been applied to
build the SDP models, e.g., support vector machine (SVM) [21],
Naive Bayes (NB) [71], Decision tree (DT) [45], K-Nearest
Neighbors (KNN), Random Forest (RF) [70], Logistic Regression
(LR) [53], and Gradient Boosting Method (GBM) [35]. We herein
employ all of these seven classifiers to investigate the impact of
class overlap on the SDP models.

Studies on class overlap techniques: Class overlap hinders the
performance of classifiers. There are some class overlap handling
techniques in the literature [4], e.g., the removing technique
and separating technique. The aim of removing techniques is to
remove the overlapping instances, while classifiers are trained on
the non-overlapping instances. Separating techniques train clas-
sifiers on overlapping and non-overlapping instances separately,
which can produce two classifiers. Lee and Kim [36] proposed
an overlap-sensitive margin (OSM) classifier to separate a dataset
into soft- and hard-overlap regions and classify each separated
region, respectively. Thus, in our study, we employ both removing
and separating techniques to investigate their impacts on the
performance of SDP models.

3 OVERLAPPING INSTANCE IDENTIFICATION

Class overlap appears when instances of more than one class
share a common region in the data space. The determination of
overlapping instances depends on the scope of regions, which
means there are no “real” ground truths of overlapping instances.
But it does not mean that this range can be expanded indefinitely.
Therefore, it is necessary to choose the best method to quantify
overlapping instances in the SDP datasets.

Figure 1 visualizes the distribution of instances in projects
of prop-5-40 and xalan-2.5, which could prove the occurrence of
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TABLE 1: Overview of the studied datasets.

Project DR(%) #modules #metrics #FACRA EPV OR
camel-1.2 35.5 608 20 10 10.8 0.268
derby-10.2.1.6 33.7 1963 54 23 12.2 0.200
derby-10.3.1.4 30.3 2206 54 23 12.4 0.189
eclipse34 debug 24.7 1065 17 10 15.5 0.170
prop1-44 9.2 4081 24 13 15.7 0.059
prop1-92 35.1 3670 24 15 53.6 0.169
prop1-164 9.0 3541 24 15 13.3 0.070
prop2-256 30.9 2025 24 14 26.0 0.153
prop3-318 14.9 2440 24 14 15.2 0.079
prop4-355 32.9 2802 24 14 38.5 0.168
prop5-4 7.5 3514 24 13 11.0 0.057
prop5-40 12.2 3815 24 15 19.4 0.069
prop5-85 26.5 3509 24 15 38.7 0.151
prop5-121 12.3 3445 24 15 17.7 0.096
prop5-157 12.8 2863 24 14 15.3 0.095
prop5-185 8.2 3260 24 13 11.2 0.071
xalan-2.5 48.2 803 20 11 19.4 0.253
xalan-2.6 46.4 885 20 11 20.55 0.210
DR:Defective Ratio.
FACRA:Features After Correlation and Redundancy Analysis.
OR: Overlap Ratio

overlapping instances in the SDP datasets. However, the visual-
ization method cannot be directly used to identify the overlapping
instances. As we know, overlapping instances are defined as the
instances from different classes (defective or non-defective) with
very similar values of metrics. That is to say, they usually reside
in overlapping regions in the feature space, which could allow
us to identify the overlapping instances by studying the class
labels of local neighborhoods of instances. Therefore, to identify
overlapping instances for evaluating the popularity and impacts of
class overlap in the SDP datasets, we propose a universal method
that relies on the natural distribution of instances rather than on a
specific classifier.

We propose to employ K-nearest neighborhoods to identify
overlapping instances. Based on the above analysis, we identify
overlapping instances by comparing the class labels of their K-
nearest neighbors. Constructing this type of neighborhood needs
both a proper value of K and a distance function. For example,
a smaller value (e.g., 1 or 3) may poorly distinguish the nature
of instances, while a higher value would be inconsistent with
the locality of instances (especially the defective instances are
fewer than non-defective instances in the SDP datasets). Chawla
et al. [10] applied local analysis to the proposed SMOTE method,
where K was set to 5 as typical options. Meanwhile, Napierala
and Stefanowski [48] also stayed with k=5 as the appropriate
value. In the SDP datasets, Kim et al. [33] found when K was
set to 5, classifiers could produce the best values. Thus, in our
study, we also use K=5 as the appropriate value. The specific
execution process of identifying overlapping instances is shown in
Appendix A.

4 STUDY DESIGN

To answer the RQs, we propose an investigation workflow in
Figure 2. We will detail each step as follows.

4.1 Experimental datasets
We select experimental datasets from public software defect
repositories, which are widely used in SDP. We collect a total
of 230 publicly-available SDP datasets, including 65 datasets
from PROMISE [42], 3 datasets from ReLink [33] and Wu et

al. [75], 5 datasets from AEEEM [12], 5 datasets from SOFT-
LAB [73], 32 datasets from JIRA [80], 3 datasets collected
by Zimmermann et al. [84], 12 datasets from NASA [58], 78
datasets from Github [72], and 27 datasets from industrial software
projects provided by Madeyski and Jureczko [39]. We identify the
overlapping instances (see Section 3) and calculate the overlap
ratios of these 230 SDP datasets to assess whether class overlap is
prominent in the SDP datasets to answer RQ1.

Meanwhile, for RQ2, RQ3, RQ4, and RQ5, we evaluate
the performance of SDP models under the effort-aware scenario
(the effort required to identify defects), which requires specific
number of defects in each software module. Thus, we employ the
following two criteria to select datasets (similar to Rajbahadur
et al. [53] and Tantithamthavorn et al. [67]):

Criterion 1: Defective ratio< 50%: If the defective ratio of a
dataset is more than 50%, that is to say, there are more than a half
of modules in a project being defective, which would not happen
in real software development. Therefore, in our study, we select
the datasets whose defective ratios are less than 50% [67, 70].

Criterion 2: Events Per Variable (EPV)> 10: EPV [53] is the
ratio of the frequency of the least occurring class of the dependent
variable to the number of independent variables involved in
training the classifiers. Tantithamthavorn et al. [68] demonstrated
that the EPV values of datasets affect the performance of SDP
models. Meanwhile, for the datasets with low EPV values, the
performance of SDP models would be unstable. Therefore, in our
study, we select the datasets whose EPV values are larger than 10
(same as Rajbahadur et al. [53]) to assure the stability of results.

As a result, 18 datasets remain that satisfy the two criteria.
Table 1 provides a detailed overview of our studied datasets for
RQ2, RQ3, RQ4, and RQ5.

4.2 Correlation analysis and redundancy analysis

Correlation analysis: Jiarpakdee et al. [29] and Tantithamthavorn
and Hassan [66] point out that correlated metrics impact the
interpretation of SDP models. Indeed, correlated metrics would
impact the results when performing overlapping instance analysis.
Therefore, we need to perform correlation analysis before doing
overlap analysis. We follow the same procedures as Rajbahadur
et al. [53] and Tantithamthavorn et al. [68] to perform this analysis.

Redundancy analysis: Except for correlated metrics, there exist
redundant metrics interfering with each other [81]. To eliminate
the impact of redundant metrics, we also remove redundant
metrics before doing overlapping instance analysis. We perform
redundant analysis the same as Rajbahadur et al. [53] and Tan-
tithamthavorn et al. [68].

4.3 Label overlapping instances
To analyze the nature and impacts of class overlap in the SDP
datasets, we should firstly identify the overlapping instances
regardless of defective or non-defective in the SDP datasets. We la-
bel overlapping instances using our proposed method described in
Section 3. Meanwhile, We also compare the overlapping instances
identified by our method with K-Means [20], Soft Margin Ratio
(SMR) [22], and Support Vector Data Description (SVDD) [76]
methods to validate the effectiveness of our proposed method.
We follow the detailed execution procedures of these comparison
methods to implement them for comparison. KNN and K-Means
are independent of any classifiers, while SMR and SVDD are



5

SDP Dataset

Correlation 
analysis

Redundancy 
analysis

Generate
bootstrap
sampes

Label
overlap

instances
Training Dataset

Testing Dataset

Baseline  
Training Dataset

Non-overlap 
Training Dataset

Overlap 
Training Dataset

Construct  
defect models

Parameter
optimization

Performance 
calculation

Feature 
important 

score

Repeat 100 times of the out-of-sample bootstrap

 Wilcoxon-
signed rank

test

 Cliff’s
Delta effect

size test

Feature
important

RQ1, RQ2

 
SK-ESD

test

Classifier

Performance analysis

Feature importance analysis

RQ4 

RQ3, RQ5

Correlation and
redundancy analysis

Fig. 2: Overview of our study design.

TABLE 2: Studied classifiers and their hyperparameters.

Abbr Classifier Python Parameters Range

SVM
Support
Vector
Machine

svc
C (0.0, 10)

kernel [’linear’, ’poly’,
’rbf’, ’rbf’, ’sigmoid’]

gamma (0.0, 10)
NB Naive

Bayes
GaussianNB

DT Decision
tree

DecisionTree
Classifier

criterion [”gini”, ”entropy”]

max depth [1,15]

min samples leaf ([1,5]]

KNN K-Nearest
Neighbors

KNeighbors
Classifier n neighbors [1,20]

RF Random
Forest

RandomForest
Classifier

n estimators [30,500]

max depth [1,15]

LR Logistic
Regression

Logistic
Regression

C (0, 4)

penalty [”l1”, ”l2”]

GBM
Gradient
Boosting
Method

GradientBoosting
Classifier

n estimators [30,500]

max depth [1,15]

max features [1,np.sqrt(no.of features)]

dependent on the SVM classifier. The specific execution process
of compared identifying overlapping instances methods are shown
in Appendix B.

4.4 Generating bootstrap samples

In our study, since the out-of-sample bootstrap validation [68]
technique leverages aspects of the statistical inference [9], we
use this technique for each studied dataset to ensure the robust
conclusions of SDP models. The out-of-sample bootstrap val-
idation technique produces the training dataset with the same
size as the original dataset by randomly sampling instances with
replacements. Efron [9] pointed out that about 36.8% of instances
would not appear in the bootstrap sample. Therefore, the non-
sampled instances are set aside as the test dataset. We repeated
100 times of the out-of-sample bootstrap process to produce 100
combinations of the train and test datasets.

4.5 Constructing defect models

Class overlap handling techniques: To investigate the impact of
class overlap on the SDP models, we apply two class overlap tech-
niques (i.e., Removing and Separating as described in Section 2.2).

It should be noted that in these two class overlap handling tech-
niques, we directly apply our proposed KNN method to identify
overlapping instances in the training dataset, which could avoid
the leakage of the test instances. The specific execution process
of removing technique and separating technique are shown in
Appendix C.
Studied Classifiers: Many classification techniques have been
applied to build the SDP models [18, 23]. Therefore, to ensure the
generalizability and applicability of our results, we select the clas-
sifiers which are widely used. As a result, we construct our SDP
models with seven classifiers, including Support Vector Machine
(SVM) [21], Naive Bayes (NB) [71], Decision Tree (DT) [45],
K-Nearest Neighbors (KNN), Random Forest (RF) [70], Logistic
Regression (LR) [53], and Gradient Boosting Method (GBM) [35].
Meanwhile, prior studies [2, 67] pointed out automated parameter
optimization affected the performance of classifiers. Thus, we
apply Hyperopt from the pypi2 Python package to tune the
hyper-parameters of these seven studied classifiers. Table 2 lists
the studied classifiers and python package used in our study.

4.6 Performance calculation
To investigate the impact of class overlap on the performance of
SDP models, we evaluate both the Defect-classification models
and Effort-aware models.
Evaluate Defect-classification models: Defect-classification
models aim to detect whether a software module is defective
or non-defective. We employ threshold-independent performance
measures of Area Under the Reciever-operator Characteristic
Curve (AUC) [37], Brier score [57], and threshold-dependent
performance measure of Recall, False alarm to evaluate the per-
formance of Defect-classification models. High values in terms
of AUC and Recall indicate good performance, while a low
value in terms of Brier-score and False alarm indicates good
performance. We refer the readers to the study by Ni et al.
[50], Tantithamthavorn et al. [70] for a more detailed explanation
of these performance measures.
Evaluate Effort-aware models: Effort-aware models aim to
consider the effort required to identify defects. In our study, we
employ Popt [31, 79] to evaluate the Effort-aware models. Popt

2. https://pypi.org/project/hyperopt/

https://scikit-learn.org/stable/modules/svm.html
https://scikit-learn.org/stable/modules/generated/sklearn.naive_bayes.GaussianNB.html
https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.KNeighborsClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.GradientBoostingClassifier.html
https://pypi.org/project/hyperopt/
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is the normalized version of effort-aware performance measures
provided by Mende and Koschke [41]. The specific definition of
Popt is shown in Appendix D.

Performance analysis: To estimate whether there are statistical
significance differences between compared SDP models, we apply
the Wilcoxon-signed rank test [61] to statistically analyze the per-
formance between compared SDP models at a confidence level of
95%. Moreover, since we perform multiple pairwise-comparisons,
we also correct the obtained p-values from the Wilcoxon-signed
rank test with Benjamini-Hochberg correction [6, 7] to control
for false positives. Meanwhile, to further estimate the differences
between compared SDP models, We then apply the Cliff’s Delta
effect size test [78] to measure the effect size. We do so since
Wilcoxon-signed rank test and Cliff’s Delta effect size test do
not assume the data is normal [14, 53]. Note that to avoid some
potential that differences between approaches are overestimated,
we do the statistical significance analysis on the median values
not directly on the 100 out-of-sample bootstrap iterations. For
each performance measure, we first compute the median value of
100 values of each dataset generated by 100 bootstrap iterations.
We then conduct the Wilcoxon-signed rank test with Benjamini-
Hochberg correction and the Cliff’s Delta effect size test (0.147
(small), 0.33 (medium), and 0.474 (large)) on the median values of
the 18 studied datasets at a confidence level of 95%. Therefore, if
the adjusted P − value < 0.05, we consider there are statistically
significant differences between the compared results. Meanwhile,
if the Cliff’s Delta ≥ 0.33, we consider there is a greater than
medium effect size between the compared results.

4.7 Feature importance analysis

To investigate the interpretation of SDP models, we calculate the
importance of each feature, rank features based on their scores,
and calculate the evaluation metrics to analyze feature importance
of seven classifiers trained on original, non-overlap, and overlap
datasets.

Calculate the feature important score: Similar to Rajbahadur
et al. [53] and Tantithamthavorn et al. [69], we apply the permuta-
tion feature importance [3] to evaluate the importance of features,
since it can be applied to any classifier. We refer the readers to
the study by Tantithamthavorn et al. [69] for a more detailed
explanation of calculating the permutation feature importance.
In our study, we apply PermutationImportance from the
Scikit-learn3 Python package to calculate the feature important
score of each feature in each dataset.

Rank feature: After obtaining the importance of each feature
in each dataset, we apply the improved Scott-Knott Effect Size
Difference (SK-ESD) [64] to obtain the rank of each feature that
is the same as Rajbahadur et al. [53] and Tantithamthavorn et al.
[69]. Thus, we can generate three feature important rank lists for
all the seven classifiers.

Calculate the evaluation metrics: After generating the three
feature important rank lists, we measure their differences to
evaluate how much they agree with each other. Thus, we use three
evaluation metrics of Top K overlap [54], where K is set to 1, 2,
and 3.

3. https://eli5.readthedocs.io/en/latest/blackbox/permutation importance.
html

Top K overlap: This evaluation metric analyzes features that exist
at the top k ranks in both the compared rank lists. The formula is
defined as

Top K overlap =
⋂

n
i≥2 Features at top k ranks

∪ni≥2Features at top k ranks
(1)

where n is the number of compared rank lists. The features at the
top ranks would be more important than others in distinguishing
defective modules from non-defective modules [38]. Therefore, in
our study, we select K=1, 2, and 3 to calculate Top 1 overlap, Top
2 overlap and Top 3 overlap, which is similar to Rajbahadur et al.
[53] and Tantithamthavorn et al. [69]. Note that for Top 1 overlap,
Top 2 overlap, and Top 3 overlap, a higher value indicates a lower
disagreement.

5 RESULTS

In this section, we present the results of the following five RQs.

5.1 (RQ1) How effective our proposed method is in
identifying overlapping instances in the SDP datasets?

Approach. Correct quantization of overlapping instances is a

prerequisite for studying the impact of class overlap on the
performance and interpretability of SDP models. Therefore, in our
study, one quantification method is to apply the same overlapping
instances identified by these different methods. In this case,
overlapping instances identified by other methods are treated as
“ground truths” that can help us measure the overlapping instances
identified by different methods. If more overlapping instances
identified by a method are also identified by another method, the
overlapping identification method would be better.

We compare overlapping instances identified by our method
with the K-Means, SMR, and SVDD algorithms (refer to Sec-
tion 4.3). Specifically, we first remove the correlated and redun-
dant metrics in each SDP dataset. We then identify overlapping
instances by our method and the comparison methods respectively.
Finally, for each method, we calculate the percentages of overlap-
ping instances that are also identified by other methods.

Furthermore, to validate the effectiveness of our proposed
method, we compare the performance of the SDP models trained
on removing overlapping instances identified by each method.
Meanwhile, since different overlapping identification methods
would identify different overlapping instances, we also compare
the combining method that considers the instance identified by
at least three of the four methods (KNN, K-Means, SMR, and
SVDD) to be an overlapping instance. For each method, we
repeated 100 times of the out-of-sample bootstrap process to
produce 100 combinations of the train and test datasets (refer to
Section 4.4). For each train and test dataset, we use the Hyperopt
method to tune the hyperparameters of the RF classifier since RF
could achieve the highest performance. In addition, we calculate
the Wilcoxon-signed rank test and Cliff’s Delta effect size test
between the models trained on original datasets and datasets
removing overlapping instances identified by each of compared
methods followed by by performance evaluation in Section 4.6.

Results. Figure 3 presents the boxplot of the percentages of the
same overlapping instances identified by any two methods across
230 SDP datasets. In this figure, each facet (such as K-Means)
represents the proportions of overlapping instances identified by
K-Means that are also identified by other methods (i.e., KNN,

https://eli5.readthedocs.io/en/latest/blackbox/permutation_importance.html
https://eli5.readthedocs.io/en/latest/blackbox/permutation_importance.html
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Fig. 3: The percentages distribution of the same overlapping
instances identified by any two methods across 230 SDP datasets.

SVDD, SMR) to the total overlapping instances identified by K-
Means. Tables 7 and 8 in Appendix E present the median values of
SDP models trained on removing overlapping instances identified
by different methods. Based on these figures, we can obtain the
following observations.

Observation 1) Our proposed method employing K-nearest
neighborhoods could identify more precise overlapping in-
stances compared with the K-Means, SMR, and SVDD meth-
ods. From Figure 3, we can observe that for most of our studied
230 SDP datasets, our proposed method (KNN) could identify
70% (or 75%) of overlapping instances identified by K-Means (or
SVDD). On the contrary, the K-Means (or SVDD) method only
identifies 50% (or 25%) overlapping instances identified by our
proposed KNN method.

On the one hand, compared with the KNN and K-Means
methods that are independent of any classifiers, the SMR and
SVDD methods are dependent on the SVM classifier. Since the
SVM classifier is not so good for software defect prediction
that could not identify defective modules [17], the overlapping
instances identified by SMR and SVDD are not precise, which
could be proved in Figure 3.

On the other hand, we hypothesize that our proposed KNN
method can identify more precise overlapping instances since the
KNN method identifies more overlapping instances distributed in
the boundary of SDP models by analyzing the class distribution
in the local neighborhood of a given instance. We do it since
instances with different label distribution in the boundary of SDP
models are the main reason for the poor performance of the SDP
models. To do so, we first apply the method proposed by Migut
et al. [44] to identify the decision boundaries of SDP models.
We then use the Euclidean distance to identify the instances
distributed in the boundary of SDP models. We finally calculate
the proportion of overlapping instances identified by different
methods in the instances distributed in the boundary of SDP
models in Figure 4. From Figure 4, we can observe that our KNN
method can identify more overlapping instances distributed in
the boundary of SDP models. Therefore, KNN can identify more
precise overlapping instances compared with the other methods.

Observation 2) SDP models trained on datasets removing
overlapping instances identified by KNN method achieve the
highest values in terms of AUC and Popt. From Tables 7 and 8
in Appendix E, we observe that SDP models trained on removing
overlapping instances identified by KNN method achieve the
highest values of 12/18 projects in terms of AUC and 15/18
projects in terms of Popt. Furthermore, we can observe that there
are statistically differences in terms of AUC, Recall, and Popt

Fig. 4: The Boxplot of the proportion of overlapping instances
identified by different methods in the instances distributed in the

boundary of SDP models.
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Fig. 5: The histogram of the class overlap ratio of the 230
publicly-available SDP datasets.

between models trained on original datasets and datasets removing
overlapping instances by KNN method. Furthermore, we observe
that if overlapping instances are not well defined, it may cause
performance degradation. Therefore, we claim that our proposed
method can identify more precise overlapping instances and can
be thought of as a benchmark.

Summary

Our proposed method employing KNN could identify more
precise overlapping instances in SDP datasets than existing
methods. Furthermore, SDP models trained on datasets re-
moving overlapping instances identified by KNN method im-
prove the AUC, Recall, and Popt performance. Therefore, we
recommend researchers and practitioners to use our proposed
KNN method to identify overlapping instances before they
build their SDP models.

5.2 (RQ2) How overlapped are the SDP datasets?

Approach. To investigate the popularity of class overlap in

SDP datasets, we analyze the ratios of overlapping instances
in 230 publicly-available SDP datasets. First, we remove the
correlated and redundant metrics in each dataset. Then, we use
our proposed overlapping instances identification method to label
the overlapping instances in each dataset. Finally, we calculate the
class overlap ratio of each dataset.

Results. Figure 5 reports the histogram of the class overlap ratio
of these 230 SDP datasets. Based on this figure, we have the
following observation.

Observation 3) Class overlap is prominent in SDP datasets.
From Figure 5, we can observe that SDP datasets have various
levels of class overlap ratios. 70.0% of SDP datasets have a class
overlap ratio above 5%. Indeed, 38.3% of SDP datasets have a
class overlap ratio between 5% and 12.5%. Meanwhile, 32.6% of
SDP datasets have a class overlap ratio higher than 12.5%.
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Fig. 6: The boxplot of the distribution of the class overlap ratio of
defect prediction data in each dataset.

Furthermore, we analyze the distribution of class overlap
ratio in different types of SDP datasets, i.e., PROMISE, ReLink,
AEEEM, SOFTLAB, JIRA, Zimmermann, NASA, Github, and
industrial software. As shown in figure 6, we observe that the
frequently-used SDP datasets (e.g., NASA, AEEEM, PROMISE,
ReLink, and SOFTLAB) have more than 12.5% of overlapping
instances, which motivates us to pay attention to the impact of
class overlap when constructing SDP models.

Summary

Class overlap is ubiquitous in SDP datasets. Especially the
frequently used datasets (i.e., NASA, AEEEM, PROMISE,
ReLink and SOFTLAB) have more than 12.5% overlapping
instances. Therefore, we recommend that researchers and
practitioners should pay attention to the class overlap issue
when they construct a study on software defect prediction.

5.3 (RQ3) How do different levels of class overlap im-
pact the performance of defect prediction models?

Approach. To better answer RQ3, we generate a series of

training datasets with different overlap ratios by flipping the label
of instances. To generate training datasets with different class
overlap ratios, we firstly apply the 100-out-of-bootstrap approach
to generate 100 pairs of training and testing datasets for each
studied dataset. We then randomly sample defective and non-
defective instances with the range of {10%, 20%, 30%, 40%, 50%,
60%, 70%, 80%, 90%} for each training dataset, respectively.
For each selected instance, we apply the Euclidean Distance to
find three nearest neighbors and flip the labels of three nearest
neighbors relying on the rule, if they are not the same as the
label of the selected instance. Finally, we repeat 10 times for the
two steps to generate 1000 (100 ∗ 10) training datasets for each
test dataset. In this RQ, we choose camel-1.2, derby-10.3.1.4, and
prop-1-92 as our experimental datasets, since these three datasets
have enough defective instances to generate different overlapping
ratios and span different fields.

After generating training datasets with different overlap ratios,
we train SDP models built by 7 classifiers (described in Sec-
tion 4.5) on these generated training datasets. For each SDP model,
we could obtain 1000 results for each studied project. Finally, we
analyze the correlation between the measured performance and
different class overlap ratios calculated by our proposed method
in Section 3.

Results. Figure 7 presents the performance of SDP models trained
on the camel-1.2 project with different levels of class overlap.
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Fig. 7: Performance of SDP models trained on the camel-1.2
project with different levels of class overlap.

Meanwhile, the performance of SDP models trained on the derby-
10.3.1.4 and Prop-1-92 projects with different levels of class
overlap can be found in Appendix E, respectively. We can obtain
the following observations from these figures.

Observation 4) Different levels of class overlap ratios have
different effects on the performance of SDP models. Especially
the class overlap ratio that is over 12.5% seriously affects the
stability of the performance of SDP models. From Figures 7, 17,
and 18 in Appendix E, we can observe that these 7 SDP models
trained on training datasets with the range of 7.5%-12.5% overlap
ratio would achieve relatively stable performance values in terms
of all studied measures. However, when the overlap ratio is
larger than 12.5%, all of these 7 models generate very turbulent
performance values in terms of all the studied measures. For
example, the RF classifier trained on the camel-1.2 dataset with
a 25% overlap ratio only achieves the AUC value of 0.51, while
the RF classifier trained on the camel-1.2 dataset with 25.6%
would achieve the AUC value of 0.798. That is to say that, the
performance of SDP models trained on datasets with a higher
than 12.5% overlap ratio is not stable. Thus, the stability of the
performance of SDP models is threatened by the class overlap
ratio, especially when the overpal ratio is above 12.5%.

Observation 5) The number of instances in training datasets
could affect the stability of the performance of SDP models
trained on training datasets with above 12.5% overlap ratio.
From Figures 7, 17, and 18 in Appendix E, we can observe that the
fluctuation of the performance of SDP models trained on derby-
10.3.1.4 and prop-1-92 are smaller than the performance trained
on camel-1.2 when the overlap ratio is higher than 12.5%. For
example, for the camel-1.2 project with 608 instances, the dis-
parities between the maximum and minimum performance values
of SDP models are 0.748, 0.494, 0.399, and 0.501 in terms of
Recall, AUC, Brier-score, and Popt, respectively, while for prop-1-
92 (derby-10.3.1.4) with 3670 (2206), the disparities between the
maximum and minimum performance values of SDP models are
0.717 (0.741), 0.316 (0.397), 0.251 (0.272), and 0.326 (0.432) in
terms of Recall, AUC, Brier-score, and Popt, respectively. That is
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to say that, when the overlap ratio is similar, increasing the number
of instances would help to improve the stability of performance.

Furthermore, we apply the 100-out-of-sample bootstrap ap-
proach to train SDP models built by 7 classifiers on the selected
original 18 datasets (described in 4.1). Then, we analyze the
disparity between the maximum and minimum values in the 100
results of each dataset. Figure 8 presents the distribution of the
disparity between the maximum and minimum values of SDP
models trained on original datasets.

From Figure 8, we could observe that the disparity of the
maximum and minimum values of SDP models trained on datasets
with an overlap ratio above 12.5% is much larger than that of SDP
models trained on datasets with overlap ratio ranging from 7.5%
to 12.5%. Meanwhile, the larger number of instances in training
datasets, the more stable the performance of SDP models. For
example the projects prop-4-355 (overlap ratio :16.8%, No.: 2802),
prop-1-92 (overlap ratio :16.9%, No.: 3670), and eclipse34 debug
(overlap ratio :17.0%, No.: 1065):
1) Comparing prop-1-92 and prop-4-355 with the same overlap
ratio but different number of instances, the disparity of studied
SDP models trained on prop-1-92 is smaller than that of studied
SDP models trained on prop-4-35 in terms of studied measures.

2) Comparing prop-1-92 and eclipse34 debug with the similar
overlap ratio but different number of instances, the disparity of
studied SDP models trained on prop-1-92 is much smaller than
that of studied SDP models trained on eclipse34 debug in terms
of studied measures.

Therefore, the disparity of SDP models trained on original
SDP datasets further prove that the overlap ratio (especially
above 12.5%) and number of instances would seriously affects
the stability of the performance of SDP models. Researchers and
practitioners should check the overlap ratio of their SDP datasets
and repeatedly run their models to prevent unstable results and
final conclusion.

Summary

The class overlap ratio that is over 12.5% seriously affects
the stability of the performance of SDP models. Furthermore,
the number of instances in training datasets would affect the
stability of the performance of SDP models trained on the
datasets with a similar overlap ratio. Therefore, we recom-
mend researchers and practitioners should check the overlap
ratio of their SDP datasets and repeatedly run their models to
prevent unstable results and findings.

5.4 (RQ4) How does class overlap impact the interpre-
tation of defect prediction models?

Approach. To answer RQ4, we first apply the permutation

importance to calculate the 100 important scores for each feature
of the 7 studied classifiers on each of the studied 18 datasets
with original and non-overlap datasets with the 100-out-of-sample
bootstrap to avoid uncertainty [43]. Then, we use the SK-ESD test
to rank and obtain a feature list of each dataset on each classifier.
Finally, to estimate the impact of overlapping instances on the
interpretation of SDP models, we compute the Top K overlap
(K=1, 2, and 3) (described in Section 4.7) in the ranks of features
that appear in the original and non-overlap datasets.
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Fig. 8: Distribution of disparities between the maximum and
minimum values of SDP models trained on original datasets

(Projects are labeled according to their overlap ratios. Note that
The x-axis is in ascending order of overlap ratio of datasets.

Furthermore, it is valuable to check whether the different
releases for the same projects have the same metrics at the Top
-1 rank for future defect prediction work. To do so, we first get
the derby, prop1, prop2, prop5, and xalan projects in Table 1 that
have different releases. We then compute the Top-1 overlap (refer
to Eq. 1) among different releases of the same project on each of
the studied classifiers.
Results. Tables 13, 14, and 15 in Appendix E present the im-
portant features in TOP-1, 2 and 3 ranks with the studied seven
classifiers for each of the studied SDP datasets generated by
Section 4.7. Figure 9 shows the density plot of Top K overlap
(K=1, 2, and 3) for each of 7 studied classifiers trained on original
and non-overlap datasets. In Figure 9, each density plot is a
representation of the distribution of the Top K overlap on Top k
feature lists between original and non-overlap datasets generated
by Section 4.7. For instance, considering the density plot with DT
classifier on the Top-1 overlap as an example, except for prop-
1-164 and prop-5-4, the other 16 SDP datasets are clustered at
the position of 1.0, since these datasets get the Top-1 overlap
value of 1. Based on these results, we can obtain the following
observations.
Observation 6) Features at the top 1 rank in original and
non-overlap datasets have a strong agreement, features at the
top 2 rank in original and non-overlap datasets have a partial
agreement, while features at the top 3 rank vary considerably.
From Figure 9, we can observe that all of the 7 studied classifiers
have a strong agreement on the importance feature list at the Top
1 rank since the top 1 overlap values of most datasets on these 7
classifiers are almost 1. In addition, 4/7 studied classifiers have a
strong agreement on the important feature lists of 9/18 datasets at
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the Top 2 ranks. Meanwhile, only 1/7 of the studied classifier has a
strong agreement on the important feature lists at the Top 3 ranks.
Furthermore, from Tables 13, 14, and 15 in Appendix E, we can
observe that for the same classifiers, despite the high agreement
on the top-1 and 2 important features, the ranking of the important
features would vary between models trained on original datasets
and models trained on removing overlapping instances. That is to
say, overlapping instances can change the important feature rank
of SDP models, which shift the interpretation of SDP models.

Observation 7) Class overlap has different impacts on the
interpretation of SDP models constructed by different classi-
fiers. From Figure 9, we can observe that the NB classifier has
a strong agreement on important feature lists at all Top-1, Top-2
and Top-3 ranks, while the LR classifier has no agreement on the
important features of most datasets at top2 and top 3 ranks. In
addition, for RF, GBM, SVM, DT, and KNN classifiers, the levels
of agreement between original and non-overlapping instances are
also different at top 1, top 2, and top 3. That is to say, the impact

of class overlap on the interpretation of SDP models depends on
the studied classifiers.

Observation 8) For a given SDP dataset, it is easier to
find agreement feature lists among different classifiers after
removing the overlapping instances. From Tables 13, 14, and 15
in Appendix E, we can observe that after removing the overlapping
instances, features at the Top-1 and 2 ranks in non-overlap datasets
with different classifiers have a strong agreement. Consider Prop-
4-355 as an example, after removing overlapping instances, the
top -1 features for the studied seven classifiers are fixed on amc,
the top-2 features for the studied seven classifiers are fixed on
mfa. That is to say, removing overlapping instances could help to
find more consistent guiding significance metrics for future defect
prediction work.

Observation 9) Compared with original datasets, GBM, RF
and SVM classifiers trained on datasets with overlapping
instances removed can identify more of the same metrics
at the Top-1 rank among the different releases for the same
projects. From Figure 10, we can observe that after removing the
overlapping instances, the median top-1 overlap of GBM improves
from 0.25 to 0.5, while the median top-1 overlap of RF improves
from 0.0 to 0.25. Therefore, we recommend that researchers and
practitioners should remove the overlapping instances to find the
same important metrics when they want to build SDP models on
the cross-version context.
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Summary

Class overlap has different impacts on interpretation of SDP
models constructed by different classifiers, especially for the
metrics listed at the Top-2 and 3 ranks. Meanwhile, removing
overlapping instances could help to find more consistent
guiding significance metrics for a given dataset and different
releases of a given project. Therefore, we recommend that
researchers and practitioners should remove the overlapping
instances to find the more consistent guiding significance
metrics.

5.5 (RQ5) How do different class overlap handling tech-
niques impact the performance of defect prediction
models?
Approach. To better answer RQ5, we firstly apply two class

overlap handling techniques (i.e., removing and separating in
Section 4.5) to handle overlapping instances. Specifically, we
firstly divide the dataset into ten datasets with over 12.5% overlap
ratio and eight datasets with lower than 12.5% overlap ratio.
We then compare SDP models with two class overlap handling
techniques with SDP models trained on original datasets on the
studied seven classifiers in Section 4.5 for two sets of studied
datasets.

In addition, we also apply two unsupervised learning methods
(CLA and CLAMI [46]) which do not consider the label informa-
tion to build SDP models, since Xu et al. [77] recently observed
that CLA and CLAMI [46] achieve competitive performance
compared with typical supervised models. Therefore, we can
obtain 23 (7×3+2) SDP models and evaluate the performance of
these 23 SDP models by performance evaluation in Section 4.6.

Results. Table 3 reports the AUC results of the 23 SDP models
based on different class overlap handling techniques for each of
the studied SDP datasets, respectively. Meanwhile, Table 3 also
lists the statistical results for the studied SDP datasets based on
different handling techniques compared with models trained on
original datasets. Note that for the CLA and CLAMI methods,
Table 3 presents the statistical results for studied SDP datasets
between models trained on the studied seven classifiers and mod-
els with CLA and CLAMI methods. Furthermore, Appendix E
presents the other evaluating measures (i.e., Recall, Brier-score,
False alarm, and Popt) of 23 SDP models based on different class
overlap handling techniques. According to these tables, we can
achieve the following observations.

Observation 10) Class overlap handling techniques have dif-
ferent effects on the performance of SDP models trained on
datasets with different overlap ratios. Class overlap handling
techniques could improve the performance of SDP models
trained on datasets with over 12.5% overlap ratios. From
Table 3 and Tables 9, 10, 11 and 12 in Appendix E, we can
observe that for SDP datasets with over 12.5% overlap ratio, SDP
models trained on datasets handled by removing or separating
techniques outperform the SDP models trained on original datasets
on 7 (6, 4, 5, 7) out of 7 studied classifiers in terms of AUC
(Recall, Brier-score, False alarm and Popt). For the KNN, LR,
SVM, GBM, and RF classifiers, there are statistically significant
different improvements in terms of different evaluated measures.
On the contrary, for SDP datasets with lower than 12.5% overlap
ratio, SDP models trained on datasets handled by removing and

separating techniques do not outperform the SDP models trained
on original datasets. Especially for the DT and NB classifiers, the
performance in terms of AUC and False alarm are lower than the
SDP models trained on original datasets.
Observation 11) Though there are some overlapping instances
in SDP datasets, SDP models trained on datasets handled
by removing and separating techniques outperform the SDP
models trained on datasets without labels (i.e., CLA and
CLAMI methods). From Tables 3 and Appendix E, we can
observe that SDP models with the studied seven classifiers trained
on datasets handled by both removing and separating techniques
can obtain statistically significant different performance compared
with CLA (or CLAMI) method in terms of AUC, Brier-score,
False alarm and popt (AUC, Recall and Brier-score). Furthermore,
the values of cliff’s delta are more than median. Therefore, we
recommend researchers and practitioners still apply supervised
learning methods with class overlap handling techniques to build
software defect prediction models.
Observation 12) The RF classifier can obtain better perfor-
mance values both on the original datasets and on the datasets
handled by removing or separating techniques. From Table 3
and Tables 9, 10, 11 and 12 in Appendix E, we can observe that
SDP models with the RF classifier can obtain the best performance
values for 18 (5, 18, 11, and 3) out of the 18 studied SDP datasets
in terms of AUC (Recall, Brier-score, False alarm, and Popt). Even
if Recall and Popt are not the best values, they are still relatively
good values, especially for SDP models with the RF classifier
trained on datasets handled by removing technique. Therefore,
even on SDP datasets with overlapping instances, we recommend
researchers and practitioners to apply the RF classifier to build
SDP models.

Summary

Class overlap handling techniques could statistically signif-
icantly improve the performance of SDP models trained on
datasets with over 12.5% overlap ratios. The RF classifier
can obtain better performance values both on the original
datasets and on the datasets handled by removing or sep-
arating techniques. Therefore, we recommend researchers
and practitioners to apply the RF classifier with removing
technique to build SDP models.

6 DISCUSSION

In Section 5, we observe that overlapping instances are ubiquitous
in SDP datasets and affect the performance and interpretation
of SDP models. Our proposed overlapping identification method
can identify more precise overlapping instances to improve the
performance of SDP models. However, our proposed overlapping
identification method may be affected by parameters (i.e., the
proportion of neighbors, distance method, and clustering method).
In this section, we study the impact of different parameters on
identifying overlapping instances and the performance of SDP
models.

6.1 The Impact of parameter proportion of neighbors
(P)
In this experiment, we change the value of the parameter propor-
tion of neighbors (p) in the range of 3, 4, 5 to investigate the impact
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TABLE 3: Comparisons between different class overlap handling techniques on 18 datasets in terms of AUC.

Overlapping Project Handling techniques DT NB KNN LR SVM GBM RF CLA CLAMI

R ≥ 12.5%

Camel-1.2
Original 0.553 0.565 0.588 0.550 0.542 0.589 0.616

0.545(L)∗∗∗ 0.521(L)∗∗∗
Removing 0.595(M)∗∗ 0.577(M)∗∗∗ 0.602∗∗ 0.589(L)∗∗∗ 0.602(M)∗∗∗ 0.635(L)∗∗∗ 0.682(L)∗∗∗
Separating 0.594(M)∗∗ 0.568(M)∗∗∗ 0.605∗∗ 0.580(M)∗∗∗ 0.603(M)∗∗∗ 0.627(L)∗∗∗ 0.680(L)∗∗∗

derby-10.2.16
Original 0.678 0.704 0.685 0.766 0.748 0.735 0.774

0.684(L)∗∗∗ 0.535(L)∗∗∗
Removing 0.727(M)∗∗ 0.707 0.749(L)∗∗∗ 0.771∗ 0.763(M)∗∗∗ 0.791(L)∗∗∗ 0.794(L)∗∗∗
Separating 0.721(M)∗∗ 0.678 0.734(L)∗∗∗ 0.757 0.753 0.779(L)∗∗∗ 0.790(L)∗∗∗

derby-10.3.1.4
Original 0.676 0.716 0.692 0.769 0.761 0.769 0.748

0.678(L)∗∗∗ 0.546(L)∗∗∗
Removing 0.724(M)∗ 0.719 0.752(L)∗∗∗ 0.773 0.760 0.790(L)∗∗∗ 0.798(L)∗∗∗
Separating 0.721(M)∗∗ 0.684 0.743(L)∗∗∗ 0.766 0.754 0.782(L)∗∗∗ 0.783(L)∗∗∗

eclipse34 debug
Original 0.623 0.746 0.666 0.689 0.687 0.714 0.780

0.644(L)∗∗∗ 0.533(L)∗∗∗
Removing 0.654(M)∗∗∗ 0.741 0.698∗∗ 0.710∗ 0.712(M)∗∗∗ 0.749(L)∗∗∗ 0.794(M)∗∗∗
Separating 0.651(M)∗∗ 0.687 0.697∗∗ 0.714M)∗∗ 0.708∗ 0.746(L)∗∗∗ 0.786

prop-1-92
Original 0.752 0.711 0.778 0.775 0.790 0.850 0.836

0.509(L)∗∗∗ 0.527(L)∗∗∗
Removing 0.786(M)∗∗ 0.714 0.813(M)∗∗∗ 0.781∗ 0.818(L)∗∗∗ 0.869(L)∗∗∗ 0.888(L)∗∗∗
Separating 0.779∗∗ 0.710 0.806(M)∗∗∗ 0.780∗ 0.813(L)∗∗∗ 0.863(L)∗∗∗ 0.873(L)∗∗∗

prop-2-256
Original 0.797 0.724 0.828 0.769 0.755 0.878 0.865

0.514(L)∗∗∗ 0.508(L)∗∗∗
Removing 0.814∗ 0.740(M)∗∗∗ 0.838∗ 0.813(L)∗∗∗ 0.861(L)∗∗∗ 0.895(L)∗∗∗ 0.920(L)∗∗∗
Separating 0.785 0.733(M)∗∗ 0.843∗ 0.819(L)∗∗∗ 0.872(L)∗∗∗ 0.901(L)∗∗∗ 0.876∗

prop-4-355
Original 0.795 0.716 0.801 0.760 0.774 0.874 0.839

0.513(L)∗∗∗ 0.516(L)∗∗∗
Removing 0.773 0.717 0.818(M)∗∗ 0.801(L)∗∗∗ 0.826(L)∗∗∗ 0.881∗ 0.900(L)∗∗∗
Separating 0.768 0.705 0.822(M)∗∗ 0.801(L)∗∗∗ 0.829(L)∗∗∗ 0.882(M)∗∗∗ 0.890(L)∗∗∗

prop-5-85
Original 0.779 0.715 0.793 0.792 0.786 0.851 0.836

0.627(L)∗∗∗ 0.582(L)∗∗∗
Removing 0.752 0.702 0.804∗ 0.818(L)∗∗∗ 0.824(L)∗∗∗ 0.861(M)∗∗∗ 0.886(L)∗∗∗
Separating 0.738 0.699 0.800∗ 0.812(L)∗∗∗ 0.824(L)∗∗∗ 0.856∗ 0.845

xalan-2.5
Original 0.621 0.582 0.657 0.579 0.616 0.697 0.706

0.578(L)∗∗∗ 0.527(L)∗∗∗
Removing 0.664∗∗ 0.595(L)∗∗∗ 0.687(L)∗∗∗ 0.643(L)∗∗∗ 0.681(L)∗∗∗ 0.742(L)∗∗∗ 0.778(L)∗∗∗
Separating 0.602 0.663(L)∗∗∗ 0.679(L)∗∗∗ 0.628(L)∗∗∗ 0.678(L)∗∗∗ 0.731(L)∗∗∗ 0.763(L)∗∗∗

xalan-2.6
Original 0.733 0.729 0.750 0.788 0.782 0.789 0.836

0.592(L)∗∗∗ 0.544(L)∗∗∗
Removing 0.775(L)∗∗ 0.742(M)∗∗∗ 0.784(L)∗∗∗ 0.796∗ 0.788∗ 0.826(L)∗∗∗ 0.860(L)∗∗∗
Separating 0.773(L)∗∗ 0.736(M)∗∗∗ 0.770(L)∗∗∗ 0.781 0.791∗ 0.814(L)∗∗∗ 0.855(L)∗∗∗

R < 12.5%

prop-1-164
Original 0.695 0.734 0.739 0.756 0.669 0.813 0.817

0.689(L)∗∗∗ 0.595(L)∗∗∗
Removing 0.706 0.739(L)∗∗∗ 0.707 0.755 0.686(M)∗∗∗ 0.783(L)∗∗∗ 0.821

Separating 0.706 0.720(L)∗∗∗ 0.730 0.779(M)∗∗∗ 0.710(L)∗∗∗ 0.801∗ 0.823

prop-1-44
Original 0.854 0.809 0.812 0.789 0.739 0.853 0.951

0.630(L)∗∗∗ 0.517(L)∗∗∗
Removing 0.893∗ 0.775 0.755 0.834(L)∗∗∗ 0.843(L)∗∗∗ 0.938(L)∗∗∗ 0.956∗

Separating 0.858 0.804 0.782 0.848(L)∗∗∗ 0.858(L)∗∗∗ 0.943(L)∗∗∗ 0.937

prop-3-318
Original 0.829 0.925 0.888 0.904 0.896 0.925 0.960

0.595(L)∗∗∗ 0.526(L)∗∗∗
Removing 0.898(M)∗∗ 0.922 0.897∗ 0.932(M)∗∗∗ 0.918∗ 0.940∗ 0.968

Separating 0.845∗∗ 0.883 0.898∗ 0.930(M)∗∗∗ 0.919∗ 0.940(M)∗∗∗ 0.922

prop-5-121
Original 0.716 0.659 0.721 0.784 0.705 0.788 0.812

0.684(L)∗∗∗ 0.631(L)∗∗∗
Removing 0.625 0.639 0.713 0.788 0.695 0.803(M)∗∗∗ 0.833(L)∗∗∗
Separating 0.626 0.665 0.721 0.797∗ 0.708 0.805(M)∗∗∗ 0.833(L)∗∗∗

prop-5-157
Original 0.696 0.651 0.724 0.784 0.755 0.793 0.791

0.691(L)∗∗∗ 0.618(L)∗∗∗
Removing 0.597 0.648 0.647 0.779 0.681 0.739 0.807

Separating 0.586 0.630 0.680 0.788 0.715 0.760 0.805

prop-5-185
Original 0.719 0.725 0.741 0.794 0.695 0.811 0.830

0.668(L)∗∗∗ 0.500(L)∗∗∗
Removing 0.608 0.726 0.698 0.793 0.717(M)∗∗∗ 0.795 0.838

Separating 0.600 0.692 0.700 0.799 0.724(M)∗∗∗ 0.798 0.826

prop-5-4
Original 0.668 0.726 0.705 0.755 0.649 0.807 0.795

0.632(L)∗∗∗ 0.635(L)∗∗∗
Removing 0.626 0.690 0.663 0.744 0.683(M)∗∗∗ 0.773 0.812

Separating 0.628 0.683 0.674 0.755 0.699(L)∗∗∗ 0.781 0.798

prop-5-40
Original 0.849 0.841 0.824 0.846 0.843 0.876 0.941

0.597(L)∗∗∗ 0.516(L)∗∗∗
Removing 0.736 0.808 0.780 0.845 0.831 0.899(L)∗∗∗ 0.931

Separating 0.707 0.798 0.786 0.845 0.836 0.897(L)∗∗∗ 0.903
(1) *** means p < 0.0001, ** means p < 0.001, * means p < 0.05.
(2) L/M: Large/Medium effect size according to Cliff’s delta.
(3) The statistical results of CLA and CLAMI are calculated with models with RF classifier trained with removing overlapping instances.
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Fig. 11: The boxplot of the percentages of the same overlapping
instances identified by different p values across 230 SDP datasets.
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Fig. 12: The boxplot of the percentages of the same overlapping
instances identified by different distance methods across 230 SDP

datasets.

of p on identifying overlapping instances and the performance
of SDP models. Figure 11 presents the percentages of the same
overlapping instances identified by different p values across 230
SDP datasets. Table 4 presents the median results for each studied
SDP dataset based on different p values.

From Figure 11 and Table 4, we observe that although more
instances are identified as overlapping instances when p is equal
to 4 and 5, the performance of the SDP model degrades. On the
contrary, when p is set to 3, our approach at least 16/18 projects
achieves the best performance in terms of AUC, Recall, Brier-
score, and Popt.

Furthermore, to indicate the effectiveness of the P values, we
calculate the Wilcoxon-signed rank test [61] and Cliff’s Delta
effect size test [78] between the models trained on removing
overlapping instances identified by P=3 and each of the other P
values in Table 4. From Table 4, we observe that the performance
of the SDP model trained on removing overlapping instances
identified by p=3 has statistical differences from other p values.
Therefore, we recommend researchers and practitioners use p=3
as our identified overlapping method.

6.2 The Impact of distance methods
To investigate the impact of the distance method on identifying
overlapping instances and performance of SDP models, we use
different distance methods (i.e., euclidean, manhattan, chebyshev,
and minkowski) to identify overlapping instances while fixing the
p to 3.

Figure 12 presents the percentages of the same overlapping
instances identified by different distance methods across 230 SDP
datasets. Table 5 presents the median results for each studied SDP
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Fig. 13: The boxplot of the percentages of the same overlapping
instances identified by the compared methods across 230 SDP

datasets.

dataset based on different distance methods. Furthermore, Table 5
presents the results of Wilcoxon-signed rank test and Cliff’s
Delta effect size test between the models trained on removing
overlapping instances identified by euclidean and other distance
methods.

From these results, we observe that percentages of the same
overlapping instances identified by any two distance methods
across 230 SDP datasets are more than 0.85. Meanwhile, mod-
els trained on removing overlapping instances identified by the
Euclidean method could get the highest performance in terms of
AUC, Recall, Brier-score, and Popt for at least 14/18 projects. Fur-
thermore, compared with other distance methods, models trained
on removing overlapping instances identified by the Euclidean
method are statistically different. Therefore, we recommend re-
searchers and practitioners to use the euclidean method as the
distance method of our identified overlapping method.

6.3 The Impact of the number of features and cluster
method

In this experiment, we study the impact of the number of features
and cluster method on our proposed overlapping identification
method, since the number of features could change how we
calculcate distance and Nam et al. [47] reported that SDP datasets
could be reduced to 2-3 metrics. We use the Grid-Clustering and
feature selection method proposed by Papakroni [51] to compare
with our proposed overlapping identification method based on
metrics with correlation and redundancy analysis in Section 4.2.

Figure 13 presents the percentages of the same overlapping
instances identified by the compared methods across 230 SDP
datasets. Table 6 presents the median results for each of the
studied SDP datasets based on the compared methods. Note that
in Figure 13 and Table 6, the term of original represents our
proposed overlapping identification method based on metrics with
correlation and redundancy analysis, the term of feature represents
our proposed overlapping identification method based on 2-3
metrics, the term of grid represents the grid-clustering method
to identify the overlapping instances.

From these results, we observe that median percentages of the
same overlapping instances identified by the compared methods
across 230 SDP datasets are less than 0.75. Meanwhile, mod-
els trained on removing overlapping instances identified by our
original method could get the highest performance for at least
15/18 projects in terms of AUC, Recall, Brier-score, and Popt.
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TABLE 4: The Median results for each studied SDP datasets based on different p values.

Project AUC↑ Recall↑ Brier − score↓ False alarm↓ Popt
↑

3 4 5 3 4 5 3 4 5 3 4 5 3 4 5
Camel-1.2 0.682 0.635(M)∗∗∗ 0.595(L)∗∗∗ 0.235 0.105(L)∗∗∗ 0.040(L)∗∗∗ 0.226 0.264(L)∗∗∗ 0.290(L)∗∗∗ 0.056 0.028 0.007 0.560 0.492(M)∗∗∗ 0.490(M)∗∗∗
derby-10.2.16 0.794 0.776(M)∗∗∗ 0.765(L)∗∗∗ 0.519 0.491∗ 0.421(L)∗∗∗ 0.176 0.192(L)∗∗∗ 0.209(L)∗∗∗ 0.120 0.121 0.105 0.460 0.436∗ 0.408(L)∗∗∗
derby-10.3.1.4 0.798 0.776∗∗ 0.756(L)∗∗∗ 0.454 0.410 0.405(M)∗∗∗ 0.166 0.182∗ 0.195(L)∗∗∗ 0.091 0.085 0.096 0.484 0.446(M)∗∗∗ 0.410(L)∗∗∗
eclipse34 debug 0.794 0.775∗∗ 0.704(L)∗∗∗ 0.333 0.258(M)∗∗∗ 0.144(L)∗∗∗ 0.152 0.176∗ 0.200(L)∗∗∗ 0.047 0.049 0.026 0.486 0.419(M)∗∗∗ 0.407(L)∗∗∗
prop-1-164 0.821 0.784(L)∗∗∗ 0.781(L)∗∗∗ 0.289 0.163∗ 0.111(L)∗∗∗ 0.060 0.069 0.072 0.006 0.002 0.000 0.687 0.633∗ 0.634∗

prop-1-44 0.956 0.871(L)∗∗∗ 0.797(L)∗∗∗ 0.372 0.284(L)∗∗∗ 0.224(L)∗∗∗ 0.046 0.061∗ 0.066∗ 0.005 0.006 0.004 0.793 0.704(L)∗∗∗ 0.664(L)∗∗∗
prop-1-92 0.888 0.864∗∗ 0.851(L)∗∗∗ 0.703 0.719 0.685∗ 0.126 0.140(M)∗∗∗ 0.149(M)∗∗∗ 0.109 0.148(L)∗∗∗ 0.147(L)∗∗∗ 0.725 0.666∗ 0.654(L)∗∗∗
prop-2-256 0.920 0.887(L)∗∗∗ 0.869(L)∗∗∗ 0.729 0.672∗ 0.657(L)∗∗∗ 0.101 0.122∗ 0.136∗ 0.076 0.096∗∗ 0.129(L)∗∗∗ 0.779 0.729∗ 0.664(L)∗∗∗
prop-3-318 0.968 0.958∗ 0.903(L)∗∗∗ 0.604 0.433(L)∗∗∗ 0.296(L)∗∗∗ 0.053 0.066∗ 0.089(M)∗∗∗ 0.017 0.005 0.000 0.859 0.829∗ 0.792(M)∗∗∗
prop-4-355 0.900 0.874∗∗ 0.846(L)∗∗∗ 0.688 0.564(L)∗∗∗ 0.531(L)∗∗∗ 0.118 0.135∗∗ 0.152(L)∗∗∗ 0.091 0.074 0.074 0.718 0.664∗ 0.667∗

prop-5-121 0.833 0.812∗ 0.765(L)∗∗∗ 0.202 0.080(L)∗∗∗ 0.036(L)∗∗∗ 0.087 0.101 0.109 0.007∗ 0.004 0.002 0.662 0.604(M)∗∗∗ 0.550(L)∗∗∗
prop-5-157 0.807 0.767(M)∗∗∗ 0.697(L)∗∗∗ 0.173 0.090(L)∗∗∗ 0.065(L)∗∗∗ 0.097 0.108 0.113 0.008 0.003 0.002 0.508 0.459∗ 0.473∗

prop-5-185 0.832 0.788(L)∗∗∗ 0.693(L)∗∗∗ 0.102 0.051(L)∗∗∗ 0.000 0.064 0.071 0.076 0.004 0.001 0.000 0.619 0.563∗ 0.536(L)∗∗∗
prop-5-4 0.812 0.716(L)∗∗∗ 0.670(L)∗∗∗ 0.199 0.073(L)∗∗∗ 0.073(L)∗∗∗ 0.056 0.065∗ 0.066∗ 0.002 0.000 0.000 0.710 0.668∗ 0.694∗

prop-5-40 0.931 0.900(L)∗∗∗ 0.855(L)∗∗∗ 0.432 0.378∗ 0.326(L)∗∗∗ 0.061 0.068 0.076∗ 0.006 0.002 0.000 0.788 0.732∗ 0.751∗

prop-5-85 0.886 0.861(M)∗∗∗ 0.856(L)∗∗∗ 0.567 0.405(L)∗∗∗ 0.404(L)∗∗∗ 0.115 0.131(M)∗∗∗ 0.138(M)∗∗∗ 0.048 0.029 0.032 0.705 0.662∗ 0.659∗

xalan-2.5 0.778 0.754∗∗ 0.749(M)∗∗∗ 0.739 0.663(L)∗∗∗ 0.558(L)∗∗∗ 0.196 0.208 0.212∗ 0.316 0.287 0.227 0.498 0.442∗ 0.463∗

xalan-2.6 0.860 0.846∗ 0.827(L)∗∗∗ 0.675 0.643∗ 0.669 0.157 0.165 0.175(M)∗∗∗ 0.133 0.132 0.186(L)∗∗∗ 0.327 0.290∗ 0.277(L)∗∗∗
(1) *** means p < 0.0001, ** means p < 0.001, * means p < 0.05.
(2) L/M: Large/Medium effect size according to Cliff’s delta.

TABLE 5: The Median results for each studied SDP datasets based on different distance methods.

Project AUC↑ Recall↑ Brier − score↓ False alarm↓ P ↑opt

Eu Ma Ch Mi Eu Ma Ch Mi Eu Ma Ch Mi Eu Ma Ch Mi Eu Ma Ch Mi
Camel-1.2 0.682 0.675 0.663∗ 0.674 0.235 0.188(M)∗∗∗ 0.167(M)∗∗∗ 0.157(M)∗∗∗ 0.226 0.224 0.225 0.226 0.056 0.044 0.043 0.034 0.560 0.535∗ 0.535∗ 0.540∗

derby-10.2.16 0.794 0.790 0.781∗ 0.786 0.519 0.493∗ 0.482∗ 0.498∗ 0.176 0.179 0.184 0.183 0.120 0.117 0.120 0.121 0.460 0.447∗ 0.439(M)∗∗ 0.437(M)∗∗
derby-10.3.1.4 0.798 0.794 0.782∗ 0.789 0.454 0.422∗ 0.397(M)∗∗∗ 0.419∗ 0.166 0.166 0.172 0.169 0.091 0.080 0.078 0.088 0.484 0.464∗ 0.460∗ 0.471∗

eclipse34 debug 0.794 0.796 0.794 0.791 0.333 0.267(M)∗∗∗ 0.284(M)∗∗∗ 0.282(M)∗∗∗ 0.152 0.159 0.158 0.159 0.047 0.044 0.050 0.046 0.486 0.448(M)∗∗∗ 0.441(M)∗∗∗ 0.449(M)∗∗∗
prop-1-164 0.821 0.820 0.819 0.818 0.289 0.178(L)∗∗∗ 0.163(L)∗∗∗ 0.175(L)∗∗∗ 0.060 0.063 0.065 0.063 0.006 0.002 0.002 0.002 0.687 0.649(M)∗∗ 0.642(M)∗∗ 0.648(M)∗∗
prop-1-44 0.956 0.968 0.943∗ 0.957 0.372 0.347∗ 0.323(M)∗∗∗ 0.338(M)∗∗∗ 0.046 0.046 0.053∗ 0.051 0.006 0.004 0.004 0.005 0.793 0.799 0.748(M)∗∗ 0.773∗

prop-1-92 0.888 0.873∗ 0.873∗ 0.873 0.719 0.725 0.713 0.699∗ 0.126 0.135∗ 0.135∗ 0.135∗ 0.109 0.137(M)∗∗ 0.141(M)∗∗ 0.132(M)∗∗ 0.725 0.698∗ 0.672(M)∗∗ 0.672(M)∗∗
prop-2-256 0.920 0.904∗ 0.899(M)∗∗∗ 0.899(M)∗∗∗ 0.729 0.690∗ 0.662(M)∗∗ 0.679(M)∗∗∗ 0.101 0.111 0.116∗ 0.116∗ 0.076 0.090∗ 0.085∗ 0.087∗ 0.779 0.763∗ 0.735(M)∗∗ 0.745(M)∗∗
prop-3-318 0.968 0.966 0.965 0.965 0.604 0.551∗ 0.516(L)∗∗∗ 0.519(L)∗∗∗ 0.053 0.056 0.058 0.059 0.017 0.011 0.013 0.012 0.859 0.842∗ 0.842∗ 0.842∗

prop-4-355 0.900 0.887∗ 0.880∗ 0.882∗ 0.688 0.661 0.615(M)∗∗∗ 0.637(M)∗∗∗ 0.118 0.125∗ 0.129∗ 0.129∗ 0.091 0.097 0.083 0.091 0.718 0.672∗ 0.659(M)∗∗ 0.662(M)∗∗
prop-5-121 0.833 0.838 0.827 0.837 0.202 0.124(M)∗∗∗ 0.109(L)∗∗∗ 0.125(M)∗∗∗ 0.087 0.091 0.093 0.090 0.007 0.004 0.004 0.004 0.662 0.635∗ 0.616(M)∗∗ 0.637∗

prop-5-157 0.807 0.806 0.797 0.792∗ 0.173 0.136(M)∗∗∗ 0.114(M)∗∗∗ 0.117(M)∗∗∗ 0.097 0.097 0.100 0.101 0.008 0.006 0.004 0.005 0.508 0.509 0.485∗ 0.483∗

prop-5-185 0.838 0.835 0.826 0.833 0.102 0.119 0.096 0.112 0.064 0.064 0.067 0.066 0.005 0.005 0.004 0.005 0.631 0.629 0.606(M)∗∗ 0.619∗

prop-5-4 0.812 0.783∗ 0.769(M)∗∗∗ 0.780 0.199 0.114 0.067(L)∗∗∗ 0.105(M)∗∗∗ 0.056 0.061 0.063 0.061 0.002 0.002 0.001 0.002 0.710 0.664(M)∗∗ 0.655(M)∗∗ 0.667(M)∗∗
prop-5-40 0.931 0.929 0.934 0.930 0.432 0.410∗ 0.403∗∗ 0.401∗∗ 0.061 0.062 0.063 0.063 0.006 0.005 0.004 0.004 0.788 0.760 0.763 0.764
prop-5-85 0.886 0.873 0.869∗ 0.867∗ 0.567 0.479(M)∗∗∗ 0.442(L)∗∗∗ 0.457(L)∗∗∗ 0.115 0.119 0.124 0.122 0.048 0.037 0.035 0.037 0.705 0.690 0.673 0.676
xalan-2.5 0.778 0.766∗ 0.762∗ 0.766∗ 0.739 0.687(M)∗∗∗ 0.717∗∗ 0.714(M)∗∗ 0.196 0.199 0.201 0.198 0.316 0.301 0.323 0.321 0.498 0.464∗ 0.468∗ 0.467∗

xalan-2.6 0.860 0.860 0.848∗ 0.855 0.675 0.631(M)∗∗∗ 0.639(M)∗∗∗ 0.649(M)∗∗∗ 0.157 0.155 0.159 0.157 0.133 0.100 0.121 0.122 0.327 0.305∗ 0.300∗ 0.301∗

(1) Eu:Euclidean; Ma:Manhattan; Ch:Chebyshev; Mi:Minkowski.
(2) *** means p < 0.0001, ** means p < 0.001, * means p < 0.05.
(3) L/M: Large/Medium effect size according to Cliff’s delta.

Therefore, we recommend researchers and practitioners to identify
overlapping instances with our parameter settings (i.e., K=5, p=3,
distance=euclidean).

7 IMPLICATIONS

According to the experimental results, we outline and present the
implications that could guide researchers and practitioners to build
their SDP models.

Implication 1) Researchers and practitioners set parameter
(i.e., K=5, p=3, distance=euclidean) as the default parameter
when applying our proposed KNN method to identify over-
lapping instances. From the experimental results in Section 6, we
can observe that different parameter setting of our proposed KNN
methods could generate different results. SDP models trained on
removing overlapping instances identified by our proposed KNN
method with the K=5, p=3, and distance=euclidean generate the
highest performance. Therefore, we recommend researchers and
practitioners to identify overlapping instances with our parameter
settings (i.e., K=5, p=3, distance=euclidean) in defect datasets.

Implication 2) Researchers and practitioners should first
apply our proposed KNN method to identify whether the
overlap ratios of their defect datasets are greater than 12.5%
before building SDP models. From the experimental results in
RQ2, we can observe that overlapping instances are ubiquitous
in SDP datasets. Indeed, different levels of class overlap have
different impacts on the performance of SDP models. When
the class overlap ratio is over 12.5%, it seriously affects the
stability of the performance of SDP models, while the frequently
used SDP datasets in NASA, AEEEM, PROMISE, ReLink, and

SOFTLAB always have more than 12.5% overlapping instances.
However, as far as we know, none of the related and similar
studies consider the class overlap problem before constructing
SDP models [8, 26, 27, 62, 70]. Therefore, we urge researchers and
practitioners to first apply our proposed KNN method to identify
overlapping ratios in their studies before constructing SDP models.

Implication 3) For defect datasets with overlap ratio greater
than 12.5%, RF classifiers with class overlap handling tech-
niques should be considered when quality assurance teams
want to reduce the efforts needed to review the code. The
experimental results of RQ5 indicate that class overlap handling
techniques (i.e., removing and separating techniques) could sta-
tistically significantly improve the performance of SDP models
trained on datasets with over 12.5% overlap ratios. The RF
classifier can obtain better performance values both on the original
datasets and on the datasets handled by removing techniques.
Therefore, we urge the researchers and practitioners to apply
the RF classifier with the removing technique to construct SDP
models for defect datasets with overlap ratios greater than 12.5%.

Implication 4) For interpretation of defect prediction models,
researchers and practitioners should first apply our proposed
KNN method to remove the overlapping instances to find
the more consistent guiding significance metrics. From the
experimental results of RQ4, we can observe that class overlap
shifts the important feature lists of SDP models, particularly the
features listed at the top 3 rank. Meanwhile, we observe that
compared with original datasets, models trained on removing
overlapping instances can identify more of the same metrics at
the Top-1 rank among the different releases of the same projects.
Therefore, we urge the researchers and practitioners to remove
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TABLE 6: The Median results for each studied SDP datasets based on compared methods.

Project AUC↑ Recall↑ Brier − score↓ False alarm↓ ↑P↑opt
Original feature Grid Original feature Grid Original feature Grid Original feature Grid Original feature Grid

Camel-1.2 0.682 0.564(L)∗∗∗ 0.593(M)∗∗∗ 0.235 0.200∗ 0.274 0.226 0.237 0.271(M)∗∗∗ 0.056 0.147(L)∗∗∗ 0.143(L)∗∗∗ 0.560 0.498(M)∗∗∗ 0.503(M)∗∗∗
derby-10.2.16 0.794 0.707(M)∗∗∗ 0.729(M)∗∗∗ 0.519 0.391(L)∗∗∗ 0.471∗ 0.176 0.198 0.205∗ 0.120 0.117 0.166(M)∗∗∗ 0.460 0.439∗ 0.451
derby-10.3.1.4 0.798 0.696(L)∗∗∗ 0.717(M)∗∗∗ 0.454 0.287(L)∗∗∗ 0.380(L)∗∗∗ 0.166 0.190∗ 0.198∗ 0.091 0.078 0.134∗ 0.484 0.419(M)∗∗∗ 0.409(M)∗∗∗
eclipse34 debug 0.794 0.775∗ 0.704(L)∗∗∗ 0.333 0.258(L)∗∗∗ 0.144(L)∗∗∗ 0.152 0.176 0.200 0.047 0.049 0.026 0.486 0.419 0.407
prop-1-164 0.821 0.649(L)∗∗∗ 0.639(L)∗∗∗ 0.289 0.058(L)∗∗∗ 0.068(L)∗∗∗ 0.060 0.082 0.080 0.006 0.003 0.008 0.687 0.519(L)∗∗∗ 0.519(L)∗∗∗
prop-1-44 0.956 0.625(L)∗∗∗ 0.630(L)∗∗∗ 0.372 0.116(L)∗∗∗ 0.092(L)∗∗∗ 0.046 0.090 0.085 0.006 0.020 0.005 0.793 0.524(L)∗∗∗ 0.525(L)∗∗∗
prop-1-92 0.888 0.713(L)∗∗∗ 0.703(L)∗∗∗ 0.719 0.475(L)∗∗∗ 0.546(L)∗∗∗ 0.126 0.234(L)∗∗∗ 0.254(L)∗∗∗ 0.109 0.114 0.182(M)∗∗∗ 0.725 0.569(L)∗∗∗ 0.630(M)∗∗∗
prop-2-256 0.920 0.697(L)∗∗∗ 0.792(L)∗∗∗ 0.729 0.579(L)∗∗∗ 0.651(M)∗∗∗ 0.101 0.234(L)∗∗∗ 0.179(L)∗∗∗ 0.076 0.19(L)∗∗∗6 0.142(L)∗∗∗ 0.779 0.655(L)∗∗∗ 0.713(M)∗∗∗
prop-3-318 0.968 0.632(L)∗∗∗ 0.632(L)∗∗∗ 0.604 0.307(L)∗∗∗ 0.021(L)∗∗∗ 0.053 0.165(L)∗∗∗ 0.143(L)∗∗∗ 0.017 0.078 0.007 0.859 0.543(L)∗∗∗ 0.345(L)∗∗∗
prop-4-355 0.900 0.713(L)∗∗∗ 0.718(L)∗∗∗ 0.688 0.539(L)∗∗∗ 0.577(L)∗∗∗ 0.118 0.241(L)∗∗∗ 0.225(L)∗∗∗ 0.091 0.164(L)∗∗∗ 0.165(L)∗∗∗ 0.718 0.668∗ 0.668∗

prop-5-121 0.833 0.693(L)∗∗∗ 0.703(L)∗∗∗ 0.202 0.069(L)∗∗∗ 0.046(L)∗∗∗ 0.087 0.111 0.109 0.007 0.013∗ 0.014∗ 0.662 0.504(L)∗∗∗ 0.454(L)∗∗∗
prop-5-157 0.807 0.689(L)∗∗∗ 0.683(L)∗∗∗ 0.173 0.058 0.089 0.097 0.113 0.111 0.008 0.007 0.017 0.508 0.456∗ 0.446∗

prop-5-185 0.838 0.687(L)∗∗∗ 0.707(L)∗∗∗ 0.102 0.057(M)∗∗∗ 0.058(M)∗∗∗ 0.064 0.074 0.072 0.005 0.004 0.007 0.631 0.513(L)∗∗∗ 0.470(L)∗∗∗
prop-5-4 0.812 0.607(L)∗∗∗ 0.616(L)∗∗∗ 0.199 0.011(L)∗∗∗ 0.021(L)∗∗∗ 0.056 0.071 0.071 0.002 0.002 0.003 0.710 0.449(L)∗∗∗ 0.395(L)∗∗∗
prop-5-40 0.931 0.900∗ 0.855(L)∗∗∗ 0.432 0.378∗ 0.326(L)∗∗∗ 0.061 0.068 0.076 0.006 0.002 0.000 0.788 0.732∗ 0.751∗

prop-5-85 0.886 0.736(L)∗∗∗ 0.712(L)∗∗∗ 0.567 0.395(L)∗∗∗ 0.353(L)∗∗∗ 0.115 0.210(M)∗∗∗ 0.200(M)∗∗∗ 0.048 0.116(L)∗∗∗ 0.104(L)∗∗∗ 0.705 0.603(L)∗∗∗ 0.554(L)∗∗∗
xalan-2.5 0.778 0.650(L)∗∗∗ 0.649(L)∗∗∗ 0.739 0.685∗ 0.605(L)∗∗∗ 0.196 0.285(L)∗∗∗ 0.287(L)∗∗∗ 0.316 0.402(L)∗∗∗ 0.377(L)∗∗∗ 0.498 0.394(L)∗∗∗ 0.376(L)∗∗∗
xalan-2.6 0.860 0.812(M)∗∗∗ 0.808(M)∗∗∗ 0.675 0.685 0.669 0.157 0.192 0.195 0.133 0.191 0.222 0.327 0.355 0.358

(1) Eu:Euclidean; Ma:Manhattan; Ch:Chebyshev; Mi:Minkowski.
(2) *** means p < 0.0001, ** means p < 0.001, * means p < 0.05.
(3) L/M: Large/Medium effect size according to Cliff’s delta.

the overlapping instances to find the more consistent guiding
significance metrics.

8 THREATS TO VALIDITY

Experimental design would affect the experimental results [65].
Therefore, in this section, we identify the threats to the validity of
our presented results.
Internal Validity. In our study, we apply KNN with Euclidean
distance and k=5 to identify the neighborhoods of a given instance
for detecting overlapping instances, other parameters of K are
not investigated. However, prior studies [11, 33, 48] have proved
the validity under k=5 and Euclidean distance in software defect
prediction. Meanwhile, we compared our proposed method with
other overlapping identification methods (K-Means, SMR, and
SVDD) and found that our proposed method employing KNN
could identify more precise overlapping instances compared with
K-Means, SMR, and SVDD methods. Therefore, we argue that
our results under the current parameter are still valid. Further-
more, we evaluate our proposed method with fixed range values
for different parameters (e.g., distance methods (i.e., euclidean,
manhattan, chebyshev, and minkowski)) in Section 6.2 to find the
best possible parameter values for the implication of our proposed
KNN method. However, we acknowledge that investigating the
impact of different parameter settings is an interesting avenue for
future research.

Another threat to internal validity is that we only study the
removing and separating techniques to handle the class overlap
problem. Other class overlap handling techniques in machine
learning (e.g., ClusBUS [13], active learning methods [82], Spill
trees [40]) are not investigated in our study. Therefore, it would
be valuable to extend our study by employing other class overlap
handling techniques.

The third possible threat to internal validity is that we apply
artificially to change their labels from defective to non-defective or
from non-defective to defective to generate datasets with different
overlap ratios. Kim et al. [33] have artificially changed the labels
of instances to generate different noise for defect prediction mod-
els. However, it is possible to introduce its own conflations into
the analysis. Therefore, we encourage future studies to explore the
impact of other generating datasets with different overlap ratio on
the performance of defect prediction models.
External Validity. The first possible external validity would be our
studied datasets. In our experimental study, we select 230 datasets
from industrial and open-source software projects and exclude

datasets whose EPV are lower (EPV < 10) or defective ratio
are high (> 50%). Thus, our results might not be generalized to
other SDP datasets. However, these datasets are characterized by
different types of software projects, with different sizes of modules
and different levels of overlapping instances (see Table 1), which
enables our findings to be reliable. In addition, we analyze the
effectiveness of our proposed KNN methods on the projects with
the fixed stages of development. Although our studied datasets
include a variety of stages of the development of the projects,
studying what stage of the development of the project to apply our
proposed KNN method in the SDP would be a valuable avenue
for future work.

The second possible external validity would be the SDP
contexts and scenarios. In our study, we only consider the Defect-
classification and Effort-aware scenarios in the within-project
context, the other SDP contexts such as cross-project context [85]
and just-in-time context [32] and other defect prediction scenario
such as the defect-count scenario [34, 49] are not explored.
Although our prior study [20] has demonstrated the effectiveness
of removing overlapping instances in cross-item scenarios, it
would be valuable to extend our study to other SDP scenarios
and contexts.

Another threat to external validity is that we analyze the impact
of the different class overlap ratios on the defect prediction models
on three software projects. Though the studied projects are diverse
in domain, size, and metrics, there is a threat that our findings may
not generalize for projects with different dimensions. Therefore,
we encourage future studies to study the impact of different
overlap ratios on the defect prediction models across different
software projects.

Construct Validity. The first possible construct validity would be
stochastic data processing techniques, such as dividing datasets
into training and test datasets. In our study, we apply 100 times of
the out-of-sample bootstrap process to produce 100 combinations
of training and test datasets. Tantithamthavorn et al. [68] have
proved that the out-of-sample bootstrap validation technique could
generate the best balance between the bias and variance in the SDP
context. Thus, the out-of-sample bootstrap validation technique
would be a well-established stochastic data processing technique
for comparing different SDP models.

Another possible construct validity would be the studied clas-
sifiers. In our study, we select 7 classifiers that are widely used in
the SDP context. Meanwhile, these 7 studied classifiers are from
different classifier families [19]. Thus, we suspect that our findings
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in these studied classifiers would be valuable to researchers and
practitioners.

The third possible threat to construct validity is that we do
not consider multiple model interpretation techniques for defect
prediction models. Prior studies [30, 55] have found that the stud-
ied model-agnostic techniques exhibit a strong agreement on the
features reported at top-1 and top-3 ranks. Therefore, in our study,
we only apply permutation method to calculate the 100 important
scores for each feature of the 7 studied classifiers on each of the
studied 18 datasets with original and non-overlapping instances.
However, it is possible that the observed results on permutation
method might not generalize for other model agnostic techniques
such as SHAP and LIME [56]. Therefore, we encourage future
studies to explore the impact of other model agnostic techniques
on the model interpretation of defect prediction models across the
original datasets and non-overlap datasets.

9 CONCLUSIONS

Class overlap is the phenomenon that datasets contain some
instances with different classes having similar values in feature
space, which hinders the performance of machine learning tech-
niques [15, 16, 52]. In the SDP context, none of the prior studies
attempts to quantify overlapping instances and the relationship
between class overlap and the performance of SDP models. To
fill these research gaps, we set out a comprehensive investiga-
tion to explore the impacts of class overlap on SDP models in
this study. Specifically, we propose a KNN method to identify
overlapping instances and investigate the overlapping level in 230
SDP datasets. Indeed, we investigate the impacts of the levels
of class overlap and class overlap handling techniques (removing
and separating) on the performance and the interpretation of SDP
models. We construct our SDP models with 7 representative
classifier techniques (SVM, RF, KNN, DT, GBM, NB, and LR)
over 18 datasets across 4 performance measures. We outline the
following observations:

● Overlapping instances are ubiquitous in SDP datasets. Mean-
while, the level of class overlap has different impacts on
the performance of SDP models, especially the class overlap
ratio that is over 12.5% seriously affects the stability of the
performance of SDP models.

● Class overlap shifts the important feature lists of SDP models,
particularly the features lists at the top 2 and 3 ranks.
Meanwhile, removing overlapping instances could help to
find more consistent guiding significance metrics for a given
dataset and different releases of a given project.

● Class overlap handling techniques could statistically signif-
icantly improve the performance of SDP models trained on
datasets with over 12.5% overlap ratios. RF classifier can
obtain better performance values both on the original datasets
and on the datasets handled by removing techniques.

Based on these findings, we have the following implications
for researchers and developers:

● Researchers and practitioners should first apply our proposed
KNN method to identify whether the overlap ratios of defect
datasets are greater than 12.5% before building SDP models.

● For defect datasets with overlap ratio greater than 12.5%, RF
classifiers with class overlap handling techniques should be
considered when quality assurance teams want to reduce the
efforts needed to review the code.

● For the interpretation of SDP models, researchers and prac-
titioners should first apply our proposed KNN method to
remove the overlapping instances to find the more consistent
guiding significance metrics.
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APPENDIX A
THE SPECIFIC EXECUTION PROCESS OF IDENTIFY-
ING OVERLAPPING INSTANCE

Figure 14 shows the specific execution process of our proposed
algorithm in Section 2.2. Specifically, we firstly produce the
five nearest neighbour through Euclidean Distance in line 3 in
figure 14. We then get the number of neighbours that are with
the same label as the current instance in line 5-9 in figure 14.
Finally, we get the overlap status of each instance based on the
results generated by previous step in lines 10-14 in figure 14.
As a result, the proportion of neighbours with the same label
against neighbours with the opposite label ranges from 5:0 (all
five neighbours have the same label with the given instance) to
0:5 (all five neighbour have the opposite label with the given
instance). Depending on the proportion, we define proportions of
the neighbours 5:0, 4:1 or 3:2 as non-overlapping instance; while
2:3, 1:4 or 0:5 as overlapping instance. Based on this method, we
can identify all overlapping instances in SDP datasets.

 

 

 

 

 

Alogrithm 1:  Idenfitying overlapping instances method 

Input: SDP datasets from {AEEEM, Github, Industrial, NASA, 
PROMISE,  ReLink, SOFTLAB, Zimmemann} 

  1  for each SDP dataset in {AEEEM, Github, Industrial, NASA, 
PROMISE,  ReLink, SOFTLAB, Zimmemann}: 

  2          for each instance i in SDP dataset: 

  3                 Calculate euclidean distance to produce the five 
nearest neighbours Listi   

  4                 number=0 

  5                 for each neighbour j in Listi: 

  6                         if label(i) == label(j): 

  7                               number=number+1 

  8                         end if 

9                  end for 

  10               if number>=3: 

  11                        Overlap_label(i)=0 

  12               else: 

  13                        Overlap_label(i)=1 

  14               end if 

  15         end for 

  16 end for 

  17  return overlap_label of SDP datasets. 

 

Fig. 14: The execution process of our proposed algorithm.

In addition, different distance functions would produce differ-
ent K-nearest neighbors [28]. In the SDP datasets, Kim et al. [33]
and Chen et al. [11] have both employed the Euclidean distance
to find the K nearest neighbors, leading to a better performance.
Therefore, in our study, we also employ the Euclidean distance
to identify the K nearest neighbors. Furthermore, to indicate the
justification of our choices about how to identify an overlap
instance, we discuss the impact of different parameters (i.e., p,
distance schemes, and cluster methods) in Section 6.

APPENDIX B
THE SPECIFIC EXECUTION PROCESS OF COMPARED
IDENTIFYING OVERLAPPING INSTANCE METHODS

The K-Means method is motivated by our prior study [20]. In
this method, instances are divided into K clusters by K-Means,
where K is determined by ensuring that the number of instances in
each cluster is not more than 20. Then, the overlapping status of
each cluster is identified through the proportion of defective and
non-defective instances (described in Eq. 2) that are similar as our
proposed method.

Overlapping instances in each cluster =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

defective instances P < 0.4
all instances 0.4 ⩽ P ⩽ 0.6

non − defectiveinstances P > 0.6

(2)

SMR is an overlap rate score of an instance assigned by the
SVM classifier. The calculating formula is defined as

SMR(i) =
m

∑
j=1

ajyjG(xj , χ) + b (3)

where aj represents a Lagrange multiplier and the instances with
aj > 0 are called support vectors. b represents an intercept. The
higher the SMR(i) score is, the better the instance i is defined.
Thus, we sort the instances in ascending order and choose the top
p% instances as overlapping instances in our study.

The SVDD method was proposed by Xiong et al. [76] who
used the support vector data description to find overlapping re-
gions in datasets. In this method, SVDD was firstly used to obtain
the decision function for each class (defective or non-defective).
Then, instances satisfying the decision function and greater than
0 in both defective and non-defective models are identified as
overlapping instances.

APPENDIX C
THE SPECIFIC EXECUTION PROCESS OF CLASS
OVERLAPPING HANDLING TECHNIQUES

Figure 15 provides different execution processes of these two
techniques. The removing technique directly removes the over-
lapping instances identified by our proposed KNN method before
building the SDP models. The separating technique divides the
training datasets into overlapping and non-overlapping datasets.
Through this, we divide the training datasets into non-overlap
training dataset (just include the non-overlapping instances) and
overlap training dataset (just include the overlapping instances).
Then, we build the SDP models for each dataset respectively.

training
dataset

non-
overlap overlap

defect 
classifier

defective non-
defective

Filter out overlapping
instances

Removing technique

training
dataset

non-
overlap overlap

defect 
classifier1

Separating technique

defect 
classifier2

non-
defectivedefective non-

defective
defective 

Fig. 15: The specific execution process of the removing and
separating techniques.
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Fig. 17: Performance of models trained on derby-10.3.1.4 project
with different levels of class overlap.
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Fig. 18: Performance of defect prediction models trained on
Prop-1-92 project with different levels of class overlap.
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Fig. 16: Cost-Effectiveness curve for an Effort-aware model.

APPENDIX D
THE DEFINITION OF Popt

Figure 16 provides an example of the performance of a prediction
model, which is a Alberg diagram. The x-axis represents the
cumulative percentage of reviewed code, while y-axis represents
the cumulative percentage of detected defects. To calculate Popt,
we need two additional models: the optimal model and the worst
model. These two models are both based on the actual defect
densities (i.e., the number of defects / lines of code). The optimal
model is sorted in decreasing order, and the worst model is sorted
in ascending order. Thus, Popt can be defined as

Popt =
Areaπ(m) −Areaπ(Worst)

Areaπ(Optimal) −Areaπ(Worst) (4)

where a high value of Popt indicates good performance.

APPENDIX E
EXPERIMENTAL RESULTS

Tables 7 and 8 present the comparison performance of SDP models
trained on removing overlapping instances identified by different
methods. Furthermore, in the Tables 7 and 8 present the statistical
results for studied SDP datasets based on different overlapping
identification methods calculated by statistical methods in Sec-
tion 4.

Figure 17 presents the performance of defect prediction mod-
els trained on derby-10.3.1.4 project with different levels of
class overlap. Note that the different levels of class overlap are
generated by the approach in Section 5.3.

Figure 18 presents the performance of defect prediction mod-
els trained on derby-10.3.1.4 project with different levels of
class overlap. Note that the different levels of class overlap are
generated by the approach in Section 5.3.

Tables 9, 10, 11 and 12 present the comparisons between
different class overlap handling techniques on 18 datasets in terms
of Recall, Brier-score, False alarm and Popt. Note that for CLA
and CLAMI method, the statistical results presented in columns
CLA and CLAMI are calculated between models trained on the
RF classifiers and models with CLA and CLAMI methods. The
statistical results presented in columns of the DT, NB, KNN, LR,
SVM, GBM and RF are calculated among the models trained on
original datasets and models trained on datasets with different
handling overlapping techniques (i.e., removing and separating).

Tables 13, 14, and 15 show the important features in TOP-1, 2
and 3 ranks with the studied seven classifiers for each of studied
SDP datasets.
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TABLE 7: The comparison performance of SDP models trained on removing overlapping instances identified by different methods.

Project Measures Original KNN K-Means SMR SVDD Combine

Camel−1.2

AUC↑ 0.616 0.682 (L)∗∗∗ 0.673(M)∗∗∗ 0.618 0.607 0.639∗∗

Recall↑ 0.115 0.235(M)∗∗∗ 0.542(L)∗∗∗ 0.098 0.129 0.115

Brier − score↓ 0.218 0.226 0.235 0.218 0.220 0.218

Falsealarm↓ 0.036 0.056 0.305 0.023 0.034 0.034

Popt
↑ 0.492 0.560(M)∗∗∗ 0.560(M)∗∗∗ 0.527∗ 0.529∗ 0.512

derby−10.2.1.6

AUC↑ 0.774 0.794 (M)∗∗∗ 0.791 (S)∗∗ 0.775 0.721 0.775

Recall↑ 0.453 0.519(L)∗∗∗ 0.660(L)∗∗∗ 0.457∗ 0.377 0.468(M)∗∗∗
Brier − score↓ 0.175 0.176 0.186 0.177 0.189 0.179

Falsealarm↓ 0.114 0.120 0.210 0.111 0.084(M)∗∗∗ 0.123

Popt
↑ 0.439 0.460∗ 0.445∗ 0.451∗ 0.439 0.438

derby−10.3.1.4

AUC↑ 0.777 0.798(L)∗∗∗ 0.796∗ 0.776 0.778 0.782∗

Recall↑ 0.368 0.454(L)∗∗∗ 0.591(L)∗∗∗ 0.405(M)∗∗∗ 0.360 0.391∗

Brier − score↓ 0.168 0.166 0.174 0.169 0.166 0.165

Falsealarm↓ 0.075 0.091 0.160 0.095 0.073 0.081

Popt
↑ 0.429 0.484(L)∗∗∗ 0.458(M)∗∗∗ 0.432 0.434 0.427

eclipse34−debug

AUC↑ 0.780 0.794∗∗ 0.789∗ 0.777 0.781 0.786

Recall↑ 0.224 0.333(L)∗∗∗ 0.429(L)∗∗∗ 0.082 0.218 0.250∗∗

Brier − score↓ 0.151 0.152 0.158 0.156 0.152 0.152

Falsealarm↓ 0.037 0.047 0.098 0.016(M)∗∗∗ 0.038 0.044

Popt
↑ 0.417 0.486∗∗ 0.432 0.420 0.433 0.424

prop−1−164

AUC↑ 0.817 0.821 0.829 (M)∗∗∗ 0.828∗∗ 0.808 0.824∗∗

Recall↑ 0.163 0.289∗∗ 0.269 0.081 0.151 0.102

Brier − score↓ 0.063 0.060 0.057 0.066 0.065 0.065

Falsealarm↓ 0.004 0.006 0.013 0.000 0.004 0.003

Popt
↑ 0.623 0.687(L)∗∗∗ 0.611 0.667(L)∗∗∗ 0.622 0.619

prop−1−44

AUC↑ 0.951 0.956 0.970(M)∗∗∗ 0.959 0.950 0.957

Recall↑ 0.290 0.372(M)∗∗∗ 0.514(L)∗∗∗ 0.180 0.146 0.280

Brier − score↓ 0.053 0.046 0.053 0.054 0.056 0.052

Falsealarm↓ 0.004 0.006 0.010 0.001 0.005 0.004

Popt
↑ 0.760 0.793∗ 0.751 0.825(L)∗∗∗ 0.741 0.786

prop−1−92

AUC↑ 0.836 0.888(L)∗∗∗ 0.890(L)∗∗∗ 0.826 0.835 0.837

Recall↑ 0.583 0.719(L)∗∗∗ 0.805(L)∗∗∗ 0.494 0.577 0.611

Brier − score↓ 0.160 0.126(L)∗∗∗ 0.132(M)∗∗∗ 0.164 0.160 0.158

Falsealarm↓ 0.117 0.109 0.162 0.088 0.111 0.128

Popt
↑ 0.622 0.725(L)∗∗∗ 0.618 0.713(L)∗∗∗ 0.650(L)∗∗∗ 0.598

prop−2−256

AUC↑ 0.865 0.920(L)∗∗∗ 0.914(M)∗∗∗ 0.863 0.872 0.870

Recall↑ 0.509 0.729(L)∗∗∗ 0.812(L)∗∗∗ 0.588(L)∗∗∗ 0.515 0.502

Brier − score↓ 0.143 0.101(L)∗∗∗ 0.111(L)∗∗∗ 0.164 0.160 0.158

Falsealarm↓ 0.064 0.076 0.124 0.085 0.061 0.056

Popt
↑ 0.695 0.779(L)∗∗∗ 0.724(M)∗∗∗ 0.737(L)∗∗∗ 0.726(M)∗∗∗ 0.706

prop−3−318

AUC↑ 0.960 0.968∗ 0.960 0.954 0.960 0.960

Recall↑ 0.453 0.604(L)∗∗∗ 0.72(L)∗∗∗ 0.382 0.421 0.452

Brier − score↓ 0.061 0.053∗ 0.049 0.069 0.062 0.061

Falsealarm↓ 0.009 0.017 0.034 0.012 0.066 0.008

Popt
↑ 0.839 0.859∗ 0.828 0.786 0.830 0.827

prop−4−355

AUC↑ 0.839 0.900(L)∗∗∗ 0.899(M)∗∗∗ 0.834 0.842 0.836

Recall↑ 0.446 0.688(L)∗∗∗ 0.771(L)∗∗∗4 0.406 0.452 0.446

Brier − score↓ 0.157 0.118(L)∗∗∗ 0.123(M)∗∗∗ 0.162 0.157 0.157

Falsealarm↓ 0.068 0.091 0.133 0.056 0.064 0.069

Popt
↑ 0.607 0.718(L)∗∗∗ 0.622(M)∗∗∗ 0.707(L)∗∗∗ 0.633(M)∗∗∗ 0.594
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TABLE 8: The Median values of SDP models trained on removing overlapping instances identified by different methods.

Project Measures Original KNN K-Means SMR SVDD Combine

prop−5−121

AUC↑ 0.812 0.833(L)∗∗∗ 0.831(M)∗∗∗ 0.818 0.819 0.815

Recall↑ 0.096 0.202(M)∗∗∗ 0.353(L)∗∗∗ 0.092 0.084 0.107

Brier − score↓ 0.091 0.087 0.092 0.090 0.089 0.089

Falsealarm↓ 0.004 0.007 0.026 0.004 0.003 0.005

Popt
↑ 0.577 0.662(L)∗∗∗ 0.574 0.583 0.581 0.583

prop−5−157

AUC↑ 0.791 0.807∗ 0.782 0.806 0.810∗ 0.805

Recall↑ 0.115 0.173∗ 0.314(L)∗∗∗ 0.081 0.110 0.114

Brier − score↓ 0.094 0.097 0.097 0.094 0.093 0.092

Falsealarm↓ 0.007 0.008 0.035 0.004 0.006 0.007

Popt
↑ 0.487 0.508∗∗ 0.492 0.492 0.493 0.485

prop−5−185

AUC↑ 0.830 0.838 0.816 0.838 0.839 0.823

Recall↑ 0.065 0.102(M)∗∗∗ 0.138(L)∗∗∗ 0.069 0.044 0.061

Brier − score↓ 0.062 0.064 0.065 0.062 0.062 0.062

Falsealarm↓ 0.002 0.005 0.007 0.003 0.001 0.002

Popt
↑ 0.566 0.631(L)∗∗∗ 0.563 0.599(M)∗∗∗ 0.580∗∗ 0.558

prop−5−4

AUC↑ 0.795 0.812 0.791 0.815 0.817 0.819

Recall↑ 0.038 0.199(M)∗∗∗ 0.278(L)∗∗∗ 0.000 0.056 0.034

Brier − score↓ 0.063 0.056 0.075 0.063 0.061 0.062

Falsealarm↓ 0.000 0.002 0.002 0.000 0.002 0.001

Popt
↑ 0.574 0.710(L)∗∗∗ 0.614∗ 0.598 0.604∗ 0.643(L)∗∗∗

prop−5−40

AUC↑ 0.941 0.931 0.926 0.944 0.945 0.946

Recall↑ 0.390 0.432∗ 0.438(M)∗∗∗ 0.355 0.392 0.390

Brier − score↓ 0.058 0.061 0.060 0.060 0.057 0.057

Falsealarm↓ 0.004 0.006 0.008 0.003 0.003 0.004

Popt
↑ 0.776 0.788 0.768 0.784 0.792 0.786

prop−5−85

AUC↑ 0.836 0.886(L)∗∗∗ 0.875(M)∗∗∗ 0.841 0.842 0.840

Recall↑ 0.325 0.567(L)∗∗∗ 0.413(L)∗∗∗ 0.334 0.328 0.329

Brier − score↓ 0.138 0.115(L)∗∗∗ 0.133 0.136 0.137 0.137

Falsealarm↓ 0.025 0.048 0.047 0.026 0.025 0.023

Popt
↑ 0.642 0.705(L)∗∗∗ 0.646 0.647 0.656(M)∗∗∗ 0.638

xalan−2.5

AUC↑ 0.706 0.778(L)∗∗∗ 0.752(M)∗∗∗ 0.699 0.703 0.707

Recall↑ 0.617 0.739(L)∗∗∗ 0.911(L)∗∗∗ 0.586 0.624 0.635

Brier − score↓ 0.223 0.196(L)∗∗∗ 0.260 0.225 0.223 0.223

Falsealarm↓ 0.313 0.316 0.535 0.282 0.323 0.321

Popt
↑ 0.394 0.498(L)∗∗∗ 0.443(M)∗∗∗ 0.320 0.316 0.380

xalan−2.6

AUC↑ 0.836 0.860(L)∗∗∗ 0.843∗ 0.817 0.824 0.837

Recall↑ 0.634 0.675∗∗ 0.838(L)∗∗∗ 0.471 0.627 0.631

Brier − score↓ 0.171 0.157(L)∗∗∗ 0.189 0.190 0.174 0.167

Falsealarm↓ 0.141 0.133 0.338 0.094 0.142 0.141

Popt
↑ 0.275 0.327(L)∗∗∗ 0.335(L)∗∗∗ 0.457(L)∗∗∗ 0.304∗∗ 0.277

(1) *** means p < 0.0001, ** means p < 0.001, * means p < 0.05.
(2) L/M: Large/Medium effect size according to Cliff’s delta.
(3) ’↓’ indicates ’the smaller the better’;’↑’ indicates ’the larger the better’.
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TABLE 9: Comparisons between different class overlap handling techniques on 18 datasets in terms of Recall.

Overlapping Project Handling techniques DT NB KNN LR SVM GBM RF CLA CLAMI

R ≥ 12.5%

Camel-1.2
Original 0.222 0.159 0.387 0.085 0.131 0.354 0.115

0.522 0.145
Removing 0.268 0.212(L)∗∗∗ 0.240 0.059 0.225(L)∗∗∗ 0.254 0.235(L)∗∗∗
Separating 0.289(M)∗∗∗ 0.233(L)∗∗∗ 0.333 0.212(L)∗∗∗ 0.327(L)∗∗∗ 0.333 0.310(L)∗∗∗

derby-10.2.16
Original 0.433 0.478 0.473 0.407 0.539 0.501 0.453

0.691 0.091(L)∗∗∗
Removing 0.476(L)∗∗∗ 0.477 0.434 0.440(M)∗∗∗ 0.560(L)∗∗∗ 0.513∗ 0.519(L)∗∗∗
Separating 0.475(M)∗∗∗ 0.487∗ 0.432 0.446(M)∗∗∗ 0.538 0.508 0.512(L)∗∗∗

derby-10.3.1.4
Original 0.428 0.455 0.460 0.378 0.327 0.480 0.368

0.693 0.140(L)∗∗∗
Removing 0.427 0.436 0.392 0.383∗ 0.460(L)∗∗∗ 0.458 0.454(L)∗∗∗
Separating 0.428 0.447 0.410 0.410(M)∗∗∗ 0.467(L)∗∗∗ 0.470 0.442(L)∗∗∗

eclipse34 debug
Original 0.427 0.255 0.381 0.147 0.200 0.380 0.224

0.615 0.098(L)∗∗∗
Removing 0.362 0.227 0.290 0.150 0.240(L)∗∗∗ 0.322 0.333(L)∗∗∗
Separating 0.381 0.257 0.316 0.239(L)∗∗∗ 0.276(L)∗∗∗ 0.351 0.345(L)∗∗∗

prop-1-92
Original 0.674 0.311 0.659 0.509 0.622 0.683 0.583

0.381(L)∗∗∗ 0.091(L)∗∗∗
Removing 0.685∗ 0.315 0.642 0.577(M)∗∗∗ 0.630 0.694∗ 0.719(L)∗∗∗
Separating 0.672 0.342(L)∗∗∗ 0.641 0.598(M)∗∗∗ 0.608 0.687 0.704(L)∗∗∗

prop-2-256
Original 0.717 0.210 0.681 0.530 0.248 0.689 0.509

0.340(L)∗∗∗ 0.059(L)∗∗∗
Removing 0.707 0.313(L)∗∗∗ 0.670 0.506 0.603(L)∗∗∗ 0.697 ∗0.729(L)∗∗∗
Separating 0.746(L)∗∗∗ 0.338(L)∗∗∗ 0.684 0.612(L)∗∗∗ 0.530(L)∗∗∗ 0.717(M)∗∗∗ 0.760(L)∗∗∗

prop-4-355
Original 0.604 0.152 0.671 0.351 0.422 0.681 0.446

0.265(L)∗∗∗ 0.070(L)∗∗∗
Removing 0.678(L)∗∗∗ 0.182(L)∗∗∗ 0.631 0.438(M)∗∗∗ 0.533(L)∗∗∗ 0.669 0.688(L)∗∗∗
Separating 0.678(L)∗∗∗ 0.197(L)∗∗∗ 0.649 0.485(L)∗∗∗ 0.577(L)∗∗∗ 0.692 0.694(L)∗∗∗

prop-5-85
Original 0.492 0.460 0.563 0.350 0.313 0.580 0.325

0.499(L)∗∗∗ 0.238(L)∗∗∗
Removing 0.589(L)∗∗∗ 0.456 0.505 0.398(M∗∗∗ 0.440(L)∗∗∗ 0.554 0.567(L)∗∗∗
Separating 0.593(L)∗∗∗ 0.510(L)∗∗∗ 0.542 0.450(L)∗∗∗ 0.475(L)∗∗∗ 0.583 0.571(L)∗∗∗

xalan-2.5
Original 0.554 0.402 0.577 0.380 0.479 0.606 0.617

0.535(L)∗∗∗ 0.179(L)∗∗∗
Removing 0.659(L)∗∗∗ 0.466(L)∗∗∗ 0.610∗ 0.541(L)∗∗∗ 0.592(L)∗∗∗ 0.668(M)∗∗∗ 0.739(L)∗∗∗
Separating 0.648(L)∗∗∗ 0.443(L)∗∗∗ 0.585 0.530(L)∗∗∗ 0.585(L)∗∗∗ 0.643(M)∗∗∗ 0.709(L)∗∗∗

xalan-2.6
Original 0.611 0.599 0.635 0.613 0.578 0.671 0.634

0.510(L)∗∗∗ 0.193(L)∗∗∗
Removing 0.636(M)∗∗∗ 0.585 0.606 0.613 0.594(M)∗∗∗ 0.649 0.675(L)∗∗∗
Separating 0.638(M)∗∗∗ 0.583 0.633 0.652(L)∗∗∗ 0.625(L)∗∗∗ 0.662 0.655(M)∗∗∗

R < 12.5%

prop-1-164
Original 0.430 0.450 0.328 0.127 0.156 0.323 0.163

0.749 0.197(L)∗∗∗
Removing 0.252 0.357 0.134 0.095 0.215(M)∗∗∗ 0.258 0.289(L)∗∗∗
Separating 0.268 0.371 0.244 0.215(L)∗∗∗ 0.302(L)∗∗∗ 0.324 0.310(L)∗∗∗

prop-1-44
Original 0.734 0.514 0.407 0.110 0.251 0.409 0.290

0.641 0.098(L)∗∗∗
Removing 0.386 0.449 0.306 0.161(M)∗∗∗ 0.315(L)∗∗∗ 0.378 0.372(L)∗∗∗
Separating 0.571 0.705(L)∗∗∗ 0.260 0.443(L)∗∗∗ 0.381(L)∗∗∗ 0.453(M)∗∗ 0.411

prop-3-318
Original 0.709 0.854 0.577 0.533 0.504 0.605 0.453

0.486(L)∗∗∗ 0.079(L)∗∗∗
Removing 0.508 0.772 0.400 0.543 0.541(L)∗∗∗ 0.549 0.604(L)∗∗∗
Separating 0.723∗ 0.901(L)∗∗∗ 0.488 0.596(M)∗∗∗ 0.587(L)∗∗∗ 0.589 0.656

prop-5-121
Original 0.206 0.390 0.282 0.139 0.047 0.285 0.096

0.645 0.336
Removing 0.286(L)∗∗∗ 0.351 0.111 0.119 0.153(L)∗∗∗ 0.199 0.202(L)∗∗∗
Separating 0.336(L)∗∗∗ 0.526(L)∗∗∗ 0.193 0.188(M)∗∗∗ 0.214(L)∗∗∗ 0.254 0.145(L)∗∗∗

prop-5-157
Original 0.206 0.388 0.228 0.191 0.011 0.252 0.115

0.659 0.299
Removing 0.225∗ 0.356 0.081 0.122 0.119(L)∗∗∗ 0.163 0.173(L)∗∗∗
Separating 0.258(M)∗∗∗ 0.392∗ 0.180 0.221(M)∗∗∗ 0.213(L)∗∗∗ 0.260 0.130∗

prop-5-185
Original 0.196 0.000 0.216 0.132 0.047 0.202 0.065

0.730 0.000(L)∗∗∗
Removing 0.240(M)∗∗∗ 0.000 0.115 0.074 0.133(L)∗∗∗ 0.151 0.102(L)∗∗∗
Separating 0.292(L)∗∗∗ 0.224(L)∗∗∗ 0.162 0.152 0.178(L)∗∗∗ 0.191 0.160(L)∗∗∗

prop-5-4
Original 0.140 0.359 0.256 0.068 0.038 0.249 0.038

0.572 0.342
Removing 0.253(L)∗∗∗ 0.301 0.121 0.039 0.078 0.171 0.199(L)∗∗∗
Separating 0.304(L)∗∗∗ 0.443(L)∗∗∗ 0.175 0.098 0.133(L)∗∗∗ 0.228 0.296(L)∗∗∗

prop-5-40
Original 0.499 0.698 0.454 0.147 0.093 0.457 0.390

0.553 0.097(L)∗∗∗
Removing 0.486 0.624 0.373 0.408 0.405(L)∗∗∗ 0.424 0.432(M)∗∗∗
Separating 0.528∗ 0.680 0.410 0.379(L)∗∗∗ 0.440(L)∗∗∗ 0.453 0.474(L)∗∗∗

(1) *** means p < 0.0001, ** means p < 0.001, * means p < 0.05.
(2) L/M: Large/Medium effect size according to Cliff’s delta.
(3) The statistical results of CLA and CLAMI are calculated with models with RF classifier trained with removing overlapping instances.
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TABLE 10: Comparisons between different class overlap handling techniques on 18 datasets in terms of Brier-score.

Overlapping Project Handling techniques DT NB KNN LR SVM GBM RF CLA CLAMI

R ≥ 12.5%

Camel-1.2
Original 0.283 0.228 0.290 0.228 0.232 0.296 0.218

0.449(L)∗∗∗ 0.272(L)∗∗∗
Removing 0.310 0.248 0.294 0.247 0.245 0.261(L)∗∗∗ 0.226

Separating 0.318 0.266 0.308 0.260 0.255 0.275∗ 0.230

derby-10.2.16
Original 0.231 0.232 0.229 0.177 0.185 0.220 0.175

0.319(L)∗∗∗ 0.233(L)∗∗∗
Removing 0.222 0.251 0.197(L)∗∗∗ 0.188 0.190 0.196(L)∗∗∗ 0.176

Separating 0.223 0.282 0.210(L)∗∗∗ 0.197 0.197 0.207∗ 0.175

derby-10.3.1.4
Original 0.223 0.211 0.222 0.168 0.174 0.198 0.168

0.329(L)∗∗∗ 0.234(L)∗∗∗
Removing 0.205∗ 0.223 0.185(L)∗∗∗ 0.178 0.183 0.188(M)∗∗∗ 0.166

Separating 0.208∗ 0.249 0.194(L)∗∗∗ 0.184 0.188 0.195 0.172

eclipse34 debug
Original 0.278 0.170 0.205 0.167 0.172 0.187 0.151

0.337(L)∗∗∗ 0.208(L)∗∗∗
Removing 0.216(L)∗∗∗ 0.185 0.180(M)∗∗∗ 0.177 0.181 0.178 0.152

Separating 0.223(L)∗∗∗ 0.220 0.192∗ 0.180 0.190 0.189 0.160

prop-1-92
Original 0.220 0.234 0.201 0.182 0.179 0.160 0.160

0.454(L)∗∗∗ 0.237(L)∗∗∗
Removing 0.193(M)∗∗∗ 0.245 0.173(L)∗∗∗ 0.186 0.169(L)∗∗∗ 0.156 0.126(L)∗∗∗
Separating 0.197(M)∗∗∗ 0.242 0.180(L)∗∗∗ 0.185 0.170(L)∗∗∗ 0.164 0.134(L)∗∗∗

prop-2-256
Original 0.176 0.197 0.158 0.177 0.195 0.137 0.143

0.421(L)∗∗∗ 0.234(L)∗∗∗
Removing 0.159∗ 0.185 0.145(L)∗∗∗ 0.170 0.145(L)∗∗∗ 0.126(L)∗∗∗ 0.101(L)∗∗∗
Separating 0.197 0.198 0.143(L)∗∗∗ 0.170 0.136(L)∗∗∗ 0.124(L)∗∗∗ 0.143

prop-4-355
Original 0.173 0.215 0.178 0.183 0.188 0.141 0.157

0.440(L)∗∗∗ 0.237(L)∗∗∗
Removing 0.194 0.214 0.161(M)∗∗∗ 0.172(L)∗∗∗ 0.156(L)∗∗∗ 0.142 0.118(L)∗∗∗
Separating 0.200 0.215 0.162(M)∗∗∗ 0.170(L)∗∗∗ 0.155(L)∗∗∗ 0.142 0.125(L)∗∗∗

prop-5-85
Original 0.157 0.210 0.161 0.152 0.150 0.139 0.138

0.315(L)∗∗∗ 0.214(L)∗∗∗
Removing 0.173 0.221 0.142(L)∗∗∗ 0.145(L)∗∗∗ 0.140(L)∗∗∗ 0.133 0.115∗

Separating 0.195 0.261 0.153(L)∗∗∗ 0.149∗ 0.142(L)∗∗∗ 0.141 0.149

xalan-2.5
Original 0.293 0.249 0.280 0.247 0.243 0.273 0.223

0.421(L)∗∗∗ 0.282(L)∗∗∗
Removing 0.319 0.254 0.271∗ 0.244 0.247 0.243(L)∗∗∗ 0.196(L)∗∗∗
Separating 0.319 0.249 0.278∗ 0.248 0.247 0.248(M)∗∗∗ 0.201(L)∗∗∗

xalan-2.6
Original 0.233 0.211 0.230 0.187 0.185 0.218 0.171

0.401(L)∗∗∗ 0.271(L)∗∗∗
Removing 0.219∗ 0.210 0.212(L)∗∗∗ 0.189 0.196 0.202 0.157(L)∗∗∗
Separating 0.221∗ 0.210 0.224∗ 0.194 0.196 0.209 0.159(L)∗∗∗

R < 12.5%

prop-1-164
Original 0.105 0.108 0.080 0.072 0.077 0.068 0.063

0.359(L)∗∗∗ 0.172(L)∗∗∗
Removing 0.076(L)∗∗∗ 0.091 0.072 0.076 0.071(L)∗∗∗ 0.068 0.060

Separating 0.081(L)∗∗∗ 0.099 0.073 0.074 0.070(L)∗∗∗ 0.070 0.063

prop-1-44
Original 0.050 0.097 0.062 0.070 0.072 0.059 0.053

0.355(L)∗∗∗ 0.517(L)∗∗∗
Removing 0.056 0.082 0.062 0.066∗ 0.067(L)∗∗∗ 0.056∗ 0.046(L)∗∗∗
Separating 0.096 0.165 0.060 0.065(M)∗∗∗ 0.064(L)∗∗∗ 0.054∗ 0.055

prop-3-318
Original 0.084 0.131 0.071 0.076 0.071 0.072 0.061

0.319(L)∗∗∗ 0.162(L)∗∗∗
Removing 0.074 0.120 0.071 0.075 0.068 0.068 0.053(L)∗∗∗
Separating 0.142 0.159 0.070 0.077 0.069 0.070 0.102

prop-5-121
Original 0.108 0.146 0.106 0.094 0.100 0.095 0.091

0.285(L)∗∗∗ 0.165(L)∗∗∗
Removing 0.118 0.138 0.099 0.098 0.104 0.095 0.087

Separating 0.146 0.215 0.103 0.101 0.107 0.098 0.092

prop-5-157
Original 0.113 0.147 0.109 0.093 0.101 0.100 0.094

0.285(L)∗∗∗ 0.163(L)∗∗∗
Removing 0.126 0.138 0.109 0.105 0.109 0.105 0.097

Separating 0.159 0.138 0.118 0.111 0.113 0.114 0.100

prop-5-185
Original 0.074 0.071 0.073 0.067 0.072 0.068 0.062

0.392(L)∗∗∗ 0.195(L)∗∗∗
Removing 0.083 0.075 0.069 0.071 0.074 0.070 0.064

Separating 0.148 0.164 0.076 0.074 0.076 0.076 0.084

prop-5-4
Original 0.074 0.118 0.072 0.063 0.067 0.061 0.063

0.337(L)∗∗∗ 0.162(L)∗∗∗
Removing 0.068 0.105 0.065 0.068 0.068 0.062 0.056

Separating 0.082 0.210 0.069 0.071 0.071 0.065 0.089

prop-5-40
Original 0.074 0.122 0.076 0.080 0.085 0.072 0.058

0.378(L)∗∗∗ 0.204(L)∗∗∗
Removing 0.071 0.100 0.072(M)∗∗∗ 0.075(M)∗∗∗ 0.074(L)∗∗∗ 0.071 0.061

Separating 0.173 0.149 0.076 0.079 0.077(L)∗∗∗ 0.074 0.084
(1) *** means p < 0.0001, ** means p < 0.001, * means p < 0.05.
(2) L/M: Large/Medium effect size according to Cliff’s delta.
(3) The statistical results of CLA and CLAMI are calculated with models with RF classifier trained with removing overlapping instances.
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TABLE 11: Comparisons between different class overlap handling techniques on 18 datasets in terms of False alarm.

Overlapping Project Handling techniques DT NB KNN LR SVM GBM RF CLA CLAMI

R ≥ 12.5%

Camel-1.2
Original 0.152 0.096 0.262 0.028 0.083 0.250 0.036

0.435(L)∗∗∗ 0.101(L)∗∗∗
Removing 0.118(∗ 0.040(L)∗∗∗ 0.108(L)∗∗∗ 0.014 0.078 0.084(L)∗∗∗ 0.056

Separating 0.152 0.165 0.182(L)∗∗∗ 0.153 0.173 0.170(L)∗∗∗ 0.128

derby-10.2.16
Original 0.160 0.188 0.183 0.087 0.068 0.173 0.114

0.321(L)∗∗∗ 0.022
Removing 0.141∗ 0.184 0.090(L)∗∗∗ 0.091 0.099 0.115(L)∗∗∗ 0.120

Separating 0.149∗ 0.234 0.117(L)∗∗∗ 0.119 0.124 0.138(L)∗∗∗ 0.121

derby-10.3.1.4
Original 0.147 0.176 0.169 0.079 0.047 0.145 0.075

0.338(L)∗∗∗ 0.047
Removing 0.125∗ 0.161 0.073(L)∗∗∗ 0.070 0.081 0.089(L)∗∗∗ 0.091

Separating 0.127∗ 0.206 0.096(L)∗∗∗ 0.095 0.102 0.109(L)∗∗∗ 0.110

eclipse34 debug
Original 0.185 0.079 0.142 0.024 0.037 0.115 0.037

0.324(L)∗∗∗ 0.034
Removing 0.085(L)∗∗∗ 0.064∗ 0.052(L)∗∗∗ 0.021 0.041 0.052(L)∗∗∗ 0.047

Separating 0.100(L)∗∗∗ 0.151 0.086(L)∗∗∗ 0.069 0.077 0.085(L)∗∗∗ 0.057

prop-1-92
Original 0.169 0.148 0.160 0.142 0.174 0.152 0.117

0.365(L)∗∗∗ 0.031
Removing 0.148(L)∗∗∗ 0.149 0.125(L)∗∗∗ 0.172 0.144(M)∗∗∗ 0.125(L)∗∗∗ 0.109

Separating 0.151(L)∗∗∗ 0.169 0.137∗ 0.204 0.157(M)∗∗∗ 0.138(L)∗∗∗ 0.113

prop-2-256
Original 0.128 0.089 0.135 0.068 0.041 0.120 0.064

0.315(L)∗∗∗ 0.047
Removing 0.107(M)∗∗∗ 0.075∗ 0.101∗ 0.096 0.099 0.088(L)∗∗∗ 0.076

Separating 0.186 0.114 0.107(L)∗∗∗ 0.103 0.099 0.094(M)∗∗∗ 0.185

prop-4-355
Original 0.142 0.087 0.134 0.085 0.101 0.122 0.068

0.292(L)∗∗∗ 0.038
Removing 0.129∗ 0.091 0.102∗ 0.083 0.083 0.099(L)∗∗∗ 0.091

Separating 0.142 0.109 0.114∗ 0.110 0.106 0.111 0.110

prop-5-85
Original 0.092 0.131 0.108 0.058 0.035 0.094 0.025

0.245(L)∗∗∗ 0.075(L)∗∗∗
Removing 0.086(L)∗∗∗ 0.129 0.060(L)∗∗∗ 0.039∗ 0.049 0.052(L)∗∗∗ 0.048

Separating 0.116 0.238 0.083(L)∗∗∗ 0.071 0.072 0.078 0.110

xalan-2.5
Original 0.340 0.300 0.350 0.276 0.336 0.336 0.313

0.377(L)∗∗∗ 0.135
Removing 0.348 0.334 0.324 0.396 0.358 0.310∗ 0.316

Separating 0.348 0.286 0.313 0.391 0.362 0.320 0.333

xalan-2.6
Original 0.203 0.297 0.221 0.173 0.135 0.233 0.141

0.321(L)∗∗∗ 0.107
Removing 0.171(M)∗∗∗ 0.254(M)∗∗∗ 0.137(L)∗∗∗ 0.176 0.153 0.171(L)∗∗∗ 0.133

Separating 0.173(M)∗∗∗ 0.265(M)∗∗∗ 0.180(M)∗∗∗ 0.219 0.179 0.205(M)∗∗∗ 0.123

R < 12.5%

prop-1-164
Original 0.059 0.102 0.030 0.008 0.006 0.021 0.004

0.370(L)∗∗∗ 0.007(L)∗∗∗
Removing 0.011(L)∗∗∗ 0.063(M)∗∗∗ 0.004(L)∗∗∗ 0.003 0.006 0.008(L)∗∗∗ 0.006

Separating 0.017(L)∗∗∗ 0.075(M)∗∗∗ 0.014(L)∗∗∗ 0.016 0.014 0.017 0.009

prop-1-44
Original 0.029 0.089 0.023 0.007 0.018 0.018 0.004

0.351(L)∗∗∗ 0.017(L)∗∗∗
Removing 0.012(L)∗∗∗ 0.056(M)∗∗∗ 0.005(L)∗∗∗ 0.006 0.012 0.007(L)∗∗∗ 0.006

Separating 0.071 0.214 0.013∗ 0.017 0.016 0.014 0.033

prop-3-318
Original 0.047 0.180 0.035 0.026 0.019 0.037 0.009

0.282(L)∗∗∗ 0.027(L)∗∗∗
Removing 0.026(L)∗∗∗ 0.158∗ 0.006(L)∗∗∗ 0.010 0.016 0.016 0.017

Separating 0.128 0.269 0.017(L)∗∗∗ 0.028 0.030 0.026 0.170

prop-5-121
Original 0.031 0.125 0.044 0.012 0.000 0.034 0.004

0.275(L)∗∗∗ 0.072(L)∗∗∗
Removing 0.036 0.089(L)∗∗∗ 0.010(L)∗∗∗ 0.005(L)∗∗∗ 0.011 0.010(L)∗∗∗ 0.007

Separating 0.066 0.230 0.023(L)∗∗∗ 0.021 0.026 0.024(L)∗∗∗ 0.010

prop-5-157
Original 0.035 0.125 0.043 0.016 0.000 0.038 0.007

0.274(L)∗∗∗ 0.063(L)∗∗∗
Removing 0.032 0.088(L)∗∗∗ 0.003(L)∗∗∗ 0.006(L)∗∗∗ 0.007 0.010(L)∗∗∗ 0.008

Separating 0.075 0.176 0.029 0.032 0.033 0.034 0.009

prop-5-185
Original 0.022 0.000 0.025 0.008 0.015 0.021 0.002

0.403(L)∗∗∗ 0.000
Removing 0.024 0.000 0.006 0.003(L)∗∗∗ 0.007 0.008(L)∗∗∗ 0.005

Separating 0.098 0.168 0.017 0.016 0.018 0.019∗ 0.034

prop-5-4
Original 0.016 0.106 0.029∗ 0.004 0.002 0.016 0.000

0.330(L)∗∗∗ 0.076(L)∗∗∗
Removing 0.012 0.074∗∗∗ 0.006(L)∗∗∗ 0.002 0.003 0.003(L)∗∗∗ 0.002

Separating 0.035 0.211 0.015 0.011 0.011 0.012∗ 0.047

prop-5-40
Original 0.033 0.115 0.028 0.014 0.005 0.025 0.004

0.370(L)∗∗∗ 0.067(L)∗∗∗
Removing 0.017(L)∗∗∗ 0.076∗∗∗ 0.006(L)∗∗∗ 0.009(L)∗∗∗ 0.012 0.008(L)∗∗∗ 0.006

Separating 0.090 0.154 0.016 0.021 0.022 0.019(L)∗∗∗ 0.072
(1) *** means p < 0.0001, ** means p < 0.001, * means p < 0.05.
(2) L/M: Large/Medium effect size according to Cliff’s delta.
(3) The statistical results of CLA and CLAMI are calculated with models with RF classifier trained with removing overlapping instances.
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TABLE 12: Comparisons between different class overlap handling techniques on 18 datasets in terms of Popt.

Overlapping Project Handling techniques DT NB KNN LR SVM GBM RF CLA CLAMI

R ≥ 12.5%

Camel-1.2
Original 0.516 0.490 0.575 0.426 0.462 0.518 0.492

0.452(M)∗∗∗ 0.666
Removing 0.588(M)∗∗∗ 0.472 0.616(M)∗∗∗ 0.473(L)∗∗∗ 0.533(L)∗∗∗ 0.538(M)∗∗∗ 0.560(L)∗∗∗
Separating 0.594(M)∗∗∗ 0.481 0.607(M)∗∗∗ 0.501 0.532(L)∗∗∗ 0.552(M)∗∗∗ 0.585(L)∗∗∗

derby-10.2.16
Original 0.509 0.355 0.516 0.439 0.457 0.481 0.439

0.425∗ 0.603
Removing 0.454 0.354 0.481 0.431 0.494(L)∗∗∗ 0.490 0.460∗

Separating 0.460 0.415(L)∗∗∗ 0.499 0.451 0.503(L)∗∗∗ 0.495 0.457∗

derby-10.3.1.4
Original 0.501 0.370 0.561 0.443 0.441 0.499 0.429

0.443 0.593
Removing 0.477 0.377 0.498 0.443 0.510(L)∗∗∗ 0.509 0.484(M)∗∗
Separating 0.477 0.387∗ 0.512 0.453 0.514(L)∗∗∗ 0.518 0.483(M)∗∗

eclipse34 debug
Original 0.611 0.532 0.554 0.364 0.480 0.524 0.417

0.345(L)∗∗∗ 0.613
Removing 0.584 0.521 0.529 0.395∗ 0.460 0.495 0.486(M)∗∗∗
Separating 0.581 0.514 0.536 0.426(L)∗∗∗ 0.483 0.511 0.490(M)∗∗∗

prop-1-92
Original 0.722 0.577 0.711 0.539 0.606 0.644 0.622

0.536(L)∗∗∗ 0.647(L)∗∗∗
Removing 0.705 0.577 0.729∗ 0.539 0.637∗ 0.676∗ 0.725(L)∗∗∗
Separating 0.701 0.586∗ 0.721 0.548 0.638∗ 0.674∗ 0.706(L)∗∗∗

prop-2-256
Original 0.793 0.640 0.777 0.595 0.593 0.728 0.695

0.269(L)∗∗∗ 0.656(L)∗∗∗
Removing 0.777 0.710(L)∗∗∗ 0.789∗ 0.619∗ 0.738(L)∗∗∗ 0.754(M)∗∗∗ 0.779(L)∗∗∗
Separating 0.778 0.654∗ 0.787∗ 0.612∗ 0.735(L)∗∗∗ 0.758(M)∗∗∗ 0.764(L)∗∗∗

prop-4-355
Original 0.646 0.581 0.761 0.505 0.593 0.717 0.607

0.301(L)∗∗∗ 0.619(L)∗∗∗
Removing 0.756(L)∗∗∗ 0.584 0.744 0.528M∗∗ 0.641(L)∗∗∗ 0.689 0.718(L)∗∗∗
Separating 0.758(L)∗∗∗ 0.574 0.755 0.554(L)∗∗∗ 0.637(L)∗∗∗ 0.702 0.720(L)∗∗∗

prop-5-85
Original 0.663 0.693 0.702 0.577 0.615 0.666 0.644

0.503(L)∗∗∗ 0.690
Removing 0.748(L)∗∗∗ 0.689 0.727∗ 0.658(L)∗∗∗ 0.668(L)∗∗∗ 0.692(M)∗∗∗ 0.705

Separating 0.746(L)∗∗∗ 0.646 0.733∗ 0.657(L)∗∗∗ 0.667(L)∗∗∗ 0.695(M)∗∗∗ 0.688

xalan-2.5
Original 0.550 0.389 0.588 0.237 0.435 0.541 0.394

0.282 0.503
Removing 0.645(L)∗∗∗ 0.394 0.608∗ 0.360(L)∗∗∗ 0.442 0.517 0.498(L)∗∗∗
Separating 0.645(L)∗∗∗ 0.375 0.618∗ 0.381(L)∗∗∗ 0.454 0.524 0.477(L)∗∗∗

xalan-2.6
Original 0.471 0.260 0.483 0.241 0.292 0.306 0.275

0.623 0.770
Removing 0.500∗ 0.252 0.475 0.251 0.301 0.294 0.327

Separating 0.500∗ 0.263 0.501 0.261 0.311 0.299 0.299

R < 12.5%

prop-1-164
Original 0.674 0.640 0.678 0.529 0.570 0.649 0.623

0.591(L)∗∗∗ 0.640(L)∗∗∗
Removing 0.620 0.639 0.647 0.581(L)∗∗∗ 0.650(L)∗∗∗ 0.651 0.687∗

Separating 0.624 0.631 0.664 0.612(L)∗∗∗ 0.671(L)∗∗∗ 0.668 0.681∗

prop-1-44
Original 0.810 0.714 0.709 0.595 0.639 0.705 0.760

0.524(L)∗∗∗ 0.559(L)∗∗∗
Removing 0.786 0.693 0.673 0.660(L)∗∗∗ 0.728(L)∗∗∗ 0.786(L)∗∗∗ 0.793∗

Separating 0.766 0.716 0.697 0.685(L)∗∗∗ 0.757(L)∗∗∗ 0.803(L)∗∗∗ 0.787∗

prop-3-318
Original 0.836 0.847 0.804 0.709 0.744 0.790 0.839

0.482(L)∗∗∗ 0.701(L)∗∗∗
Removing 0.841 0.849 0.816 0.793(L)∗∗∗ 0.791∗ 0.824∗ 0.859

Separating 0.817 0.790 0.822∗ 0.797(L)∗∗∗ 0.795∗ 0.824∗ 0.851

prop-5-121
Original 0.594 0.647 0.639 0.529 0.540 0.591 0.577

0.574∗ 0.701
Removing 0.686(L)∗∗∗ 0.645 0.655∗ 0.609(L)∗∗∗ 0.635(L)∗∗∗ 0.633(M)∗∗∗ 0.662(L)∗∗∗
Separating 0.674(L)∗∗∗ 0.623 0.661∗ 0.619(L)∗∗∗ 0.636(L)∗∗∗ 0.637(M)∗∗∗ 0.646(L)∗∗∗

prop-5-157
Original 0.524 0.566 0.566 0.502 0.515 0.547 0.487

0.501 0.642
Removing 0.573(M)∗∗∗ 0.561 0.522 0.480 0.471 0.500 0.508∗

Separating 0.584(M)∗∗∗ 0.552 0.565 0.525∗ 0.517 0.542 0.524∗

prop-5-185
Original 0.621 0.521 0.627 0.494 0.546 0.610 0.566

0.457(L)∗∗∗ 0.601
Removing 0.653 0.530 0.626 0.527∗ 0.631(L)∗∗∗ 0.626∗ 0.631(L)∗∗∗
Separating 0.623 0.474 0.634 0.622(L)∗∗∗ 0.632(L)∗∗∗ 0.635∗ 0.623(L)∗∗∗

prop-5-4
Original 0.626 0.690 0.701 0.558 0.586 0.643 0.574

0.471(L)∗∗∗ 0.711
Removing 0.729(L)∗∗∗ 0.673 0.723∗ 0.673(L)∗∗∗ 0.665(L)∗∗∗ 0.681(M)∗∗∗ 0.710(L)∗∗∗
Separating 0.722(L)∗∗∗ 0.652 0.718∗ 0.678(L)∗∗∗ 0.672(L)∗∗∗ 0.686(M)∗∗∗ 0.711(L)∗∗∗

prop-5-40
Original 0.754 0.786 0.709 0.627 0.627 0.698 0.776

0.488(L)∗∗∗ 0.643(L)∗∗∗
Removing 0.760 0.788 0.731 0.704(L)∗∗∗ 0.714(L)∗∗∗ 0.748(L)∗∗∗ 0.788

Separating 0.740 0.769 0.734 0.699(L)∗∗∗ 0.716(L)∗∗∗ 0.749(L)∗∗∗ 0.779
(1) *** means p < 0.0001, ** means p < 0.001, * means p < 0.05.
(2) L/M: Large/Medium effect size according to Cliff’s delta.
(3) The statistical results of CLA and CLAMI are calculated with models with RF classifier trained with removing overlapping instances.
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TABLE 13: The important features in TOP-1, 2 and 3 ranks with the studied seven classifiers for each of studied SDP datasets

Project Classifiers Top-1 rank Top-2 rank Top-3 rank

Original Removing Original Removing Original Removing

Camel
-1.2

DT ca, avg cc,lcom ca, lcom, avg cc cam cam, amc
amc, lcom3,
dit, cbm,
moa, noc

lcom3, cbm,
dit, noc,
moa

NB noc noc avg cc avg cc lcom lcom

KNN cam, avg cc cbm, cam, avg cc dit, lcom, lcom3,
cbm, noc, amc

dit, lcom, amc, noc,
moa moa, ca ca, lcom3

SVM avg cc, noc avg cc moa, cbm cam, cbm, noc, moa cam, lcom lcom3, lcom

LR noc, avg cc noc, lcom3 lcom3, moa, lcom, ca lcom, avg cc cbm ca

GBM ca, lcom ca avg cc lcom, avg cc

amc, dit,
cbm, moa,
noc, lcom3,
cam

dit, amc,
cbm

RF ca ca avg cc, noc, lcom lcom, avg cc moa noc, moa, cbm, lcom3

derby
-10.2.16

DT CountLineComment CountLineComment MaxInheritanceTree MaxInheritanceTree

RatioCommentToCode
CountDeclInstance-
Variable,
CountClassCoupled

CountDeclInstance-
Variable,
CountClassCoupled

NB CountClassCoupled CountClassCoupled
CountLineComment,
CountDeclMethod-
Private

CountLineComment,
CountDeclMethod-
Private

CountDeclClass,
CountDeclMethodPublic,
CountDeclInstance-
Variable

CountDeclClass,
CountDeclMethodPublic,
CountDeclInstance-
Variable

KNN MaxInheritanceTree MaxInheritanceTree CountLineComment,
CountClassCoupled

CountClassCoupled,
CountLineComment

CountDeclMethodPublic,
PercentLackOfCohesion

CountDeclMethodPublic,
PercentLackOfCohesion

SVM MaxInheritanceTree MaxInheritanceTree CountLineComment CountLineComment

CountDeclMethodPublic,
MaxNestingMean,
CountDeclClass,
CountDeclMethod-
Private,
PercentLackOfCohesion

CountDeclMethod-
Public,
MaxNesting Mean

LR CountLineComment CountLineComment,
CountClassCoupled CountDeclMethodPrivate CountDeclMethodPrivate CountClassCoupled RatioCommentToCode

GBM CountLineComment,
MaxInheritanceTree CountLineComment

CountDeclInstanceVariable,
MaxNesting Mean,
CountDeclMethodPublic,
CountDeclMethod-
Private

MaxInheritanceTree

AvgLineComment,
CountDeclMethodProtected,
RatioCommentToCode,
PercentLackOfCohesion,
CountClassCoupled,
CountDeclMethodDefault

CountDeclInstance-
Variable,
CountDeclMethodPublic,
MaxNesting Mean

RF CountLineComment CountLineComment MaxInheritanceTree MaxInheritanceTree
CountDeclMethodPrivate,
CountDeclInstanceVariable,
CountClassCoupled

CountDeclMethodPrivate

derby
-10.3.1.4

DT CountLineComment CountLineComment MaxInheritanceTree RatioCommentToCode CountClassCoupled,
RatioCommentToCode

RatioCommentToCode,
CountClassCoupled

NB CountLineComment CountLineComment CountClassCoupled CountClassCoupled CountDeclMethodPrivate CountDeclMethodPrivate

KNN MaxInheritanceTree MaxInheritanceTree CountClassCoupled CountClassCoupled CountLineComment CountLineComment

SVM CountLineComment,
MaxInheritanceTree MaxInheritanceTree CountClassCoupled CountLineComment,

CountClassCoupled
AvgLineComment,
CountDeclMethodPrivate

MaxNesting Mean,
CountDeclMethodPrivate,
AvgLineComment

LR CountLineComment CountLineComment RatioCommentToCode RatioCommentToCode AvgLineComment MaxInheritanceTree

GBM CountLineComment CountLineComment MaxInheritanceTree MaxInheritanceTree CountDeclMethodPrivate,
AvgLineComment

AvgLineComment,
CountDeclMethodPrivate

RF MaxInheritanceTree,
CountLineComment

MaxInheritanceTree,
CountLineComment

CountDeclMethodPrivate,
AvgLineComment

CountDeclMethodPrivate,
AvgLineComment

CountDeclMethodProtected,
CountOutput Min,
CountDeclClassMethod,
MaxNestingMean,
RatioCommentToCode

CountDeclClassMethod,
MaxNesting Mean,
CountOutput Min,
CountDeclMethod-
Protected,
RatioCommentToCode

eclipse34
debug

DT change times change times CBO CBO DIT, IFANIN IFANIN, NCV, DIT

NB change times change times NCV NCV CBO CBO

KNN change times change times,
IFANIN IFANIN, CBO DIT, CBO DIT, NCV NCV, NIM

SVM change times change times CBO, NCV CBO NIM, IFANIN, NIV, NCM NCV

LR change times change times CBO NCV NCV CBO

GBM change times change times CBO CBO NCV NCV

RF change times change times CBO, NCV CBO NIM NCV
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TABLE 14: The important features in TOP-1, 2 and 3 ranks with the studied seven classifiers for each of studied SDP datasets

Project Classifiers Top-1 rank Top-2 rank Top-3 rank

Original Removing Original Removing Original Removing

prop-1
-164

DT ndpv amc, ndpv amc ndc ndc, ce ce

NB ndpv ndpv ndc ndc ca, ce ca, ce

KNN ndpv ndpv ndc ndc ce amc, lcom3

SVM ndpv ndpv ndc ndc lcom3, ce ce

LR ndc ndc lcom3 lcom3 npm ndpv

GBM ndpv ndpv ndc ndc ce ce

RF ndpv ndpv ndc, ce ndc, ce lcom3, ca, amc lcom3

prop-1
-44

DT ndpv ndpv cam cam mfa mfa

NB ndpv ndpv cam cam ca ca

KNN ndpv ndpv cam cam mfa mfa, lcom3

SVM ndpv ndpv cam cam mfa mfa

LR ndpv ndpv mfa, cam mfa lcom cam

GBM ndpv ndpv cam cam mfa mfa

RF ndpv ndpv cam cam ce, npm, mfa ce, npm

prop-1
-92

DT amc amc mfa mfa lcom3, avg.cc., ce ce, avg.cc., lcom3

NB avg.cc. avg.cc. lcom3, amc lcom3, amc ndc ndc

KNN lcom3 amc avg.cc. avg.cc. amc, ce lcom3, ce

SVM ce amc amc, lcom3 ce avg.cc. lcom3

LR ce lcom3 lcom3, avg.cc. ce ic avg.cc.

GBM amc amc mfa mfa ce ce

RF amc amc mfa mfa ce ce

prop-2
-256

DT amc amc dit, mfa dit avg.cc., npm mfa

NB avg.cc. avg.cc. amc amc dit, mfa dit, mfa

KNN avg.cc. dit amc, dit amc lcom3 avg.cc.

SVM dit dit amc amc mfa mfa

LR mfa mfa avg.cc. avg.cc. amc dit

GBM amc amc mfa dit, mfa dit avg.cc.

RF amc amc dit dit mfa avg.cc., mfa

prop-4
-355

DT amc amc mfa mfa dit, lcom3 lcom3, dit

NB amc amc max.cc. max.cc. dit dit

KNN dit dit amc mfa mfa amc

SVM dit dit amc amc mfa mfa

LR mfa, dit dit amc mfa dam amc

GBM amc amc mfa mfa ca, dit dit

RF amc amc mfa mfa dit dit

prop-5
-121

DT cbo cbo lcom3, nr, ndpv lcom3 avg.cc., cam, mfa nr, avg.cc., mfa, cam, ndpv

NB ndpv ndpv nr nr cbo cbo

KNN ndpv ndpv, mfa, lcom3 cbo, nr nr, cbo, amc, dam lcom3 avg.cc.

SVM nr, ndpv ndpv, nr cbo cbo lcom dam, lcom3

LR cbo cbo amc amc nr, ndpv ndpv

GBM nr, cbo cbo, nr ndpv, ca, avg.cc.,
mfa, lcom3, cam ca amc, npm, ic, noc,

moa, lcom, dam mfa, avg.cc., ndpv, lcom3

RF nr nr cbo cbo ndpv ndpv

prop-5
-157

DT cbo cbo cam, nml amc amc cam, nml

NB ndpv ndpv nml nml cbo cbo

KNN nml cbo, nml cbo amc amc ca, npm

SVM nml nml cbo cbo ndpv ndpv

LR cbo cbo nml, ca nml amc, dam ca

GBM cbo cbo cam, nml, amc amc ic nml, cam

RF cbo, cam cbo, cam nml nml amc, ndpv amc
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TABLE 15: The important features in TOP-1, 2 and 3 ranks with the studied seven classifiers for each of studied SDP datasets

Project Classifiers Top-1 rank Top-2 rank Top-3 rank

Original Removing Original Removing Original Removing

prop-5
-185

DT cbo cbo avg.cc. avg.cc., cam cam, npm npm

NB cbo cbo ca ca lcom lcom

KNN cbo cbo amc, mfa, dam, ca, avg.cc. mfa, dam moa, npm, lcom3, lcom, cam moa, ca, lcom3, amc

SVM cbo cbo dam, amc, avg.cc., mfa mfa, dam lcom3, ca, moa avg.cc., amc, lcom3

LR cbo cbo ca ca amc, lcom, cam amc

GBM cbo cbo avg.cc. avg.cc. amc amc

RF cbo cbo avg.cc., amc, cam avg.cc. dam, lcom3 amc, cam

prop-5
-4

DT lcom3, cbo, ca cbo, lcom3 npm, amc amc, ca, npm mfa dam, cam, mfa, ndpv

NB ndpv ndpv cbo cbo ca ca

KNN lcom lcom amc, npm, cbo amc, cbo, npm ca ca

SVM ndpv ndpv cbo cbo ca, mfa, avg.cc. ca, amc, avg.cc., mfa

LR cbo cbo ca ca ndpv, amc ndpv, amc

GBM amc, cbo amc ca, mfa cbo lcom3, ndpv ca

RF cam, cbo, ndpv, mfa amc ca, npm, dam ca, cbo, mfa avg.cc., lcom, lcom3, cam ndpv, dam, lcom3, npm

prop-5
-40

DT ndpv ndpv nr, cam nr, cam lcom lcom

NB nr nr ndpv ndpv cam cam

KNN nr nr amc amc cbo cbo

SVM ndpv ndpv nr nr cam cam

LR ndpv nr nr ndpv cam cam

GBM ndpv ndpv nr, cam nr lcom cam

RF ndpv ndpv nr nr cam cam

prop-5
-85

DT cbo, cam cbo, cam ndc amc, ndc, mfa mfa lcom3

NB ndc ndc ndpv ndpv cbo cbo

KNN cbo cbo amc amc lcom lcom

SVM cbo, ndc cbo cam ndc mfa, amc, lcom3 cam

LR cbo cbo ndc ndc cam cam

GBM cbo cbo mfa mfa cam cam, ndc, amc

RF cbo cbo amc amc, mfa mfa ndc

xalan
-2.5

DT amc amc lcom3, lcom lcom3, lcom ca, npm, dit dit, ca, npm

NB avg cc, npm avg cc, npm noc, lcom noc, lcom moa, dit moa, dit

KNN dit, dam dit avg cc dam moa, lcom3, amc, npm avg cc

SVM dit dit dam, lcom3 dam avgcc, amc lcom3

LR npm avg cc dit, avg cc npm lcom, dam, noc dam

GBM amc amc lcom lcom lcom3, dit dit, lcom3, npm, ca

RF ndc amc lcom3, lcom lcom3, lcom ca, dit, npm ca, dit

xalan
-2.6

DT amc amc npm npm, cam cam lcom3

NB amc amc lcom lcom npm npm

KNN lcom3, amc lcom3 cam amc moa, avg cc, ic, npm, dit cam

SVM amc amc lcom3 lcom3 cam, npm cam

LR amc amc npm npm lcom3 lcom3

GBM amc amc npm, cam npm, cam lcom3 lcom3

RF dit amc cam cam npm npm


	Introduction
	Motivation and Related work
	Motivation
	Related work

	Overlapping Instance Identification
	Study design
	Experimental datasets
	Correlation analysis and redundancy analysis 
	Label overlapping instances
	Generating bootstrap samples
	Constructing defect models
	Performance calculation
	Feature importance analysis

	Results
	(RQ1) How effective our proposed method is in identifying overlapping instances in the SDP datasets? 
	(RQ2) How overlapped are the SDP datasets? 
	(RQ3) How do different levels of class overlap impact the performance of defect prediction models? 
	(RQ4) How does class overlap impact the interpretation of defect prediction models? 
	(RQ5) How do different class overlap handling techniques impact the performance of defect prediction models? 

	Discussion
	The Impact of parameter proportion of neighbors (P) 
	The Impact of distance methods
	The Impact of the number of features and cluster method

	Implications
	Threats to validity
	Conclusions
	Biographies
	Lina Gong
	Haoxiang Zhang
	Jingxuan Zhang
	Mingqiang Wei
	Zhiqiu Huang

	Appendix A: The specific execution process of identifying overlapping instance
	Appendix B: The specific execution process of compared identifying overlapping instance methods
	Appendix C: The specific execution process of class overlapping handling techniques
	Appendix D: The definition of Popt
	Appendix E: Experimental results

